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Detecting antiferromagnetism of atoms in an optical lattice via optical Bragg scattering
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Antiferromagnetism of ultracold fermions in an optical lattice can be detected by Bragg diffraction of light,
in analogy to the diffraction of neutrons from solid-state materials. A finite sublattice magnetization will lead
to a Bragg peak from the ( 1

2
1
2

1
2 ) crystal plane with an intensity depending on details of the atomic states, the

frequency and polarization of the probe beam, the direction and magnitude of the sublattice magnetization, and
the finite optical density of the sample. Accounting for these effects we make quantitative predictions about the
scattering intensity and find that with experimentally feasible parameters the signal can be readily measured with
a CCD camera or a photodiode and used to detect antiferromagnetic order.
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I. INTRODUCTION

Ultracold atomic gases in optical lattices may be used
as analog quantum simulators of condensed-matter models
[1]. Simulating the Fermi-Hubbard model is particularly
interesting. This model is nearly impossible to solve using
traditional techniques, yet is amenable to simulation with
cold atoms. Most importantly, this model is relevant for
understanding a wide class of strongly correlated electron
systems. For example, many believe that it captures the
essential physics responsible for high-temperature supercon-
ductivity in cuprates [2]. The major technical challenges to this
program are in developing improved cooling and measurement
techniques. Here we explore how light scattering can be used
to detect “magnetic” order in a gas of fermionic atoms in an
optical lattice, focusing on the antiferromagnetic order found
at low temperatures in the insulating phase of the Hubbard
model. Producing (and detecting) such an antiferromagnetic
state is a key step on the road to exploring superfluidity in the
Hubbard model.

The Hubbard Hamiltonian for a two-spin-component Fermi
gas is

H = −t
∑

〈i,j〉,σ=↑,↓
(c†i,σ cj,σ + H.c.) + U

∑
i

ni,↑ni,↓,

where i, j label lattice sites, angle brackets denote sums over
nearest neighbors, σ is the spin label, and the occupation
of site i is ni,σ = c

†
i,σ ci,σ . The coefficient t is the hopping

energy between adjacent sites, and U is the on-site interaction
energy. Jaksch et al. [3] show how a gas of atoms in an optical
lattice reduces to this model at low temparatures and provide
expressions for t and U in terms of atomic properties. We
consider the case U, t > 0.

At half-filling (one atom per lattice site) and strong
repulsion (U � t), the Hamiltonian reduces to an
antiferromagnetic (AFM) Heisenberg model:

HAFM = J
∑
〈i,j〉

Si · Sj , (1)

*corcoted@gmail.com

where J ≡ 4t2/U and Si is the spin operator for site i. At lower
lattice depths, J is renormalized to a slightly lower value by the
direct interaction between atoms on neighboring sites [4]. An
infinite system described by HAFM undergoes a second-order
phase transition to an antiferromagnetically ordered Néel state
at a temperature TN∼J � U .

Achieving these temperatures is far from trivial. Exper-
iments on cold fermions [5,6] have reached temperatures
sufficiently low to observe characteristics of the Mott insulator,
but so far T > TN . Much lower temperatures will be reached
in the near future, when the next generation of cooling
protocols is implemented [7–10]. Many of these approaches
are interesting not only for their utility, but also for the insight
they provide about fundamental issues of thermodynamics and
quantum statistics.

The proposals for detecting AFM ordering in an atomic gas
mostly rely on the fact that appropriately tuned light couples
differently to the two spin components [11,12]. For example, in
an experiment where one can directly image individual lattice
sites [13–15], one can use this selectivity to directly resolve the
AFM ordering. An alternative proposal involves measuring the
spatial noise correlations in images of the density profile after
turning off the trapping and lattice potentials [16–18]. The
experimental noise contains information about the density-
density correlation functions of the system and, in principle,
encodes the antiferromagnetism. This method has been used
to detect imposed lattice order in a bosonic Mott insulator
[19,20] and a fermionic band insulator [21]. Its disadvantage
is sensitivity to technical noise and that averaging over many
experimental shots under similar conditions is needed to obtain
sufficient statistics.

Here we propose detecting magnetic order through in situ
Bragg diffraction of light (as opposed to Bragg diffraction
of atoms, another common technique [22]). This method is
analogous to neutron scattering [23,24] and magnetic x-ray
scattering [25,26], as used in solid-state physics. Optical
Bragg diffraction has been used previously in cold atomic
gases to confirm the crystalline ordering of nondegenerate
atoms in optical lattices [27–29]. Incoherent Bragg scattering
has recently been proposed as a method for thermometry in
two-dimensional (2D) fermion lattices [30]. Compared to the
other proposed techniques for detecting AFM ordering, the
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primary advantages of Bragg diffraction are its simplicity,
speed, and relatively large signal. In this work, we report
a detailed theoretical analysis of Bragg scattering from an
array of atoms trapped in an optical lattice and demonstrate its
usefulness under typical experimental conditions.

II. BASIC THEORY

We consider atoms confined in a three-dimensional
(3D) simple cubic optical lattice potential, V (x, y, z) =
V0[sin2(πx/a) + sin2(πy/a) + sin2(πz/a)], where the lattice
constant a is half of the lattice laser wavelength and V0

is the depth of the optical potential, assumed to be large
enough that the tight-binding approximation holds. Although
the transverse Gaussian intensity profile of the laser beams
causes V0 to be position dependent, in the relevant part of the
cloud it can be taken to be constant.

Two collisionally closed atomic hyperfine sublevels (↑,↓)
may be treated as a pseudospin- 1

2 system, where there is no
mechanism for spin relaxation. We assume that the two states
are separated in energy by a splitting 2�0 and have optical
resonance transitions suitable for imaging with linewidth �—
concrete examples using 6Li will be given later. An external
magnetic field is applied to tune the interactions between
atoms via a Feshbach resonance. This field also defines the
quantization axis for the Zeeman sublevels of the hyperfine
states and, hence, of the pseudospin states.

A. Bragg scattering cross section in the Born approximation

We initially consider Bragg scattering in the limit of low
probe intensity and low optical density. In this limit the Born
approximation may be used. The more general case will be
considered in Sec. IV A and the Appendix. Our system consists
of atoms in an optical lattice described by operators for position
r̂j and occupation number n̂jσ . In the Born approximation, the
total amplitude for elastic scattering reduces to [31]

Fkf ,ki
=

∑
j

∑
σ=↑,↓

fσ n̂jσ eiK·r̂j , (2)

where the difference between incoming and outgoing wave
vectors of the photons is ki − kf = K, and

fσ = − 3

2k
(e∗

kf ,λf
· em)(e∗

m · eki ,λi
)

�/2

�σ + i�/2

= 3

2k
(e∗

kf ,λf
· em)(e∗

m · eki ,λi
)eiδσ sin(δσ ) (3)

is the scattering amplitude for individual spin-σ atoms. Here,
eki ,λi

is the polarization vector of the incoming photon with
wave vector ki and polarization λi (generally elliptical), and
em is the polarization which couples to the resonant optical
transition. The phase shifts δσ are related to the linewidth
and detuning by tan(δσ ) = −�/2�σ . Note that Eq. (2) is
valid only when the optical density of the sample is small
compared to one. Optically dense samples will be considered
in Sec. IV A. To achieve spin-dependent scattering, the probe
light frequency must be near an atomic resonance. Hence,
the interaction between light and the atoms is neither purely
diffractive nor purely absorptive. This is clearly illustrated by
considering the lattice-free case and assuming the atoms are
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FIG. 1. (Color online) Real (η − 1, solid red line) and imaginary
(κ , dashed blue line) parts of the index of refraction for a uniform
gas of 6Li atoms as a function of laser detuning. The atoms are taken
to be in the two lowest hyperfine states with densities n↓ = n↑ =
1/[2(532 nm)3] = 3.3 × 1012 cm−3 in an external magnetic field of
834 G, yielding a Zeeman splitting of 2�0 = 2π × 76 MHz. The laser
excites the D2 line with linewidth � = 2π × 5.9 MHz ≈ 2�0/13.
Thin vertical lines denote the two resonances and their midpoint.

uniformly distributed with densities n↑ and n↓. The electric
susceptibility χbulk of the bulk sample is then [31]

χbulk = −4πc3

ω3

(
f↑n↑ + f↓n↓

2

)
,

where ω is the angular frequency of the light, c is the speed
of light in vacuum. The real and imaginary components of
the index of refraction η and κ are then given by the usual
relationship: η + iκ = √

1 + χ . The dependence of these
quantities on the probe laser frequency for 6Li is shown in
Fig. 1 for the case where n↑ = n↓.

As seen in the figure, when the probe detuning is halfway
between the levels, η is unity and κ has a local minimum. For
this detuning the scattering phase shifts of the two states obey
δ↑ = −δ↓. This will be the operating point of our proposed
measurement. There are three advantages to working at this
point: (i) we can neglect bulk dispersive effects because η = 1,
(ii) absorption is small, and (iii) we are maximally sensitive to
the spin order.

Experiments measure the differential scattering cross
section

dσ (K)

d�
= Tr[ρ̂i F̂

†
kf ,ki

F̂kf ,ki
]

= 9

4k2

∑
λf

|(e∗
kf ,λf

· em)(e∗
m · eki ,λi

)|2

×
∑

σ,σ ′,j,j ′
[〈n̂jσ n̂j ′σ ′eiK·(r̂j −r̂j ′ )〉

× ei(δσ −δσ ′ ) sin(δσ ) sin(δσ ′)].

The density matrix ρ̂i = ρ̂A ⊗ |ki , λi〉〈ki , λi | describes the
initial state of the system (where ρ̂A is the thermal density
matrix of the atoms). Tracing over outgoing polarizations gives
a factor

∑
λf

|(e∗
kf ,λf

· em)(e∗
m · eki ,λi

)|2 = 1
4 (1 + cos2 θ )(1 +

cos2 θ ′), where θ (θ ′) is the angle between the magnetization
axis and the incoming (outgoing) wave vector, assuming the
incoming elliptical polarization is chosen to maximize the
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signal.1 The thermal average 〈n̂jσ n̂j ′σ ′eiK(r̂j −r̂j ′ )〉 factorizes
with 〈n̂jσ n̂j ′σ ′ 〉 = 〈( 1

2 + σ Ŝzj )( 1
2 + σ ′Ŝzj ′ )〉, where we assume

half-filling ni↑ + ni↓ = 1, σ = ±1, and Szi = 1
2 (ni↑ − ni↓).

The factor 〈eiK·(r̂j −r̂j ′ )〉 ≈ e−2WeiK·(Rj −Rj ′ ), where e−2W =
e−l2K2/2 is the Debye-Waller factor due to the zero-point
motion of the atoms around the lattice sites Rj in terms of
the harmonic oscillator length l ≈ √

h̄/mω of the individual
wells. The differential cross section becomes

dσ (K)

d�
= 9

4k2

1

4
(1 + cos2 θ )(1 + cos2 θ ′)e−2W

× [α(δ↑, δ↓)C(K) + β(δ↑, δ↓)S(K)], (4)

where we introduce the crystal structure factor C(K ) =∑
i,j eiK·(Ri−Rj ) and spin structure factor S(K) =∑
i,j ei K ·(Ri−Rj)〈SziSzj 〉. The coefficients are α(δ↑, δ↓) =

1
4 |f̄↑ + f̄↓|2 and β(δ↑, δ↓) = |f̄↑ − f̄↓|2, with f̄σ =
eiδσ sin(δσ ). As described previously, for a laser
frequency where δ↑ = −δ↓ ≡ δ � 1 (this is achieved
when �↑ = −�↓ = �0), the coefficients simplify:

α(δ↑, δ↓) = sin4(δ) ≈ δ4 ≈ (�/2�0)4,

β(δ↑, δ↓) = sin2(2δ) ≈ 4δ2 ≈ 4(�/2�0)2.

The factor S(K) in Eq. (4) represents the well-known
result that (spin-selective) Bragg scattering measures the spin
structure factor. In solids one uses neutron scattering for the
same purpose and the coupling between the magnetic moment
of the neutrons and electron spin causes different scattering
amplitudes for ↑,↓ electrons [32]. In cold atoms the situation
is even more favorable, as this result shows: by choosing
detuning with opposite phase shifts for the two spin states, one
can basically turn off the signal from the underlying lattice and
probe only the spin order (i.e., α � β).

The predicted locations of Bragg diffraction peaks [i.e.,
maxima in dσ (K)/d�] are given by the Laue condition: The
difference in wave vector between the outgoing and incoming
scattered light (ki − kf = K) is equal to a reciprocal lattice
vector Q of the crystal [33]. Rewriting this condition in
terms of unit propagation vectors (e.g., k̂i = ki/|ki |) and the
wavelength of the scattered light λ gives

k̂f − k̂i = λ

a
(l m n) , (5)

where the Miller indices of the scattering plane are defined for
a cubic lattice of side a by (lmn) ≡ Qa/2π .

The Miller indices provide a useful categorization for the
Bragg scattering peaks. For non-antiferromagnetic phases, the
crystal is simple cubic ordered with side a and the valid
scattering planes are those with integer values of the Miller
indices. For the Néel ordered antiferromagnetic state, the
crystal ordering is face-centered cubic with side 2a. This
introduces additional scattering planes, where (lmn) as defined
above are each half-integers (e.g., 1

2 or 3
2 ). Planes with

1The optimal incoming polarization is found by projecting the
transition polarization em onto the 2D space ⊥ k. Defining the unit
vectors ŝ ∝ k̂ × ẑ and p̂ ∝ k̂ × ŝ, the optimal incoming polarization
is ek,λ = (ŝ − i cos θ p̂)/

√
1 + cos2 θ .

mixtures of integer and half-integer indices do not produce
scattering [32].

The magnitude of the reciprocal lattice vectors available for
Bragg scattering is further restricted by the the vector triangle
inequality

||kf | − |ki || � |Q| � |kf | + |ki |,
(6)

0 � |Q| � 2k,

where the second line assumes elastic scattering. In terms of
the Miller indices,

0 � l2 + m2 + n2 �
(

2a

λ

)2

. (7)

The consequence of Eq. (7) is that for the configurations typical
of optical lattice experiments where a ∼ λ, only a handful
of choices for K [equivalently, (lmn)] will produce Bragg
scattering.

B. Finite cubic lattice

The structure factors S(K) and C(K) in Eq. (4) are sums
that may be performed exactly for a cubic lattice with length
per side of L sites (N = L3 total sites). By recognizing that
the sum in the crystal structure factor is that of a geometric
sequence in this configuration, it evaluates to

C(K) =
∏

j=x,y,z

sin2(KjaL/2)

sin2(Kja/2)
. (8)

If K corresponds to a reciprocal lattice vector of the crystal,
then the sum is maximized with C(K) = N2, demonstrating
the coherent enhancement of the scattering when the Laue
condition is satisfied. As K moves away from a reciprocal
lattice vector, C(K) falls off approximately quadratically.

The spin structure factor S(K) may be evaluated in a
similar way. Magnetically ordered phases may be described
by a spin-ordering vector q such that the average staggered
spin is s = 1

N

∑
j Seiq·Rj , having z component sz. In the

mean-field approximation the spin-dependent factor in S(K)
is 〈SziSzj 〉 = 〈Szi〉〈Szj 〉 = s2

z e
iq·(Ri−Rj ). In particular, a ferro-

magnetic (fully polarized) phase has q = 0 and a Néel AFM
has q = 2π

a
( 1

2
1
2

1
2 ). With this notation,

S(K) = s2
z

∏
j=x,y,z

sin2[(Kj + qj )aL/2]

sin2[(Kj + qj )a/2]
. (9)

When K + q corresponds to a reciprocal lattice vector, S(K)
is maximized with value s2

z N
2.

The locations of the maxima in C(K) and S(K) are
well-known results from solid-state physics and agree with the
Laue condition [Eq. (5)]. As explained in standard textbooks
[32,33], Bragg scattering for a simple cubic lattice occurs only
at planes where the Miller indices are integers in the absence
of magnetic ordering. If the crystal contains AFM ordering,
half-integer Miller indices are also possible, indicating a
doubling of the crystal unit cell. Planes with mixtures of integer
and half-integer Miller indices have zero scattering amplitude.

In the case of a paramagnetic phase (e.g., when T > TN ),
the spins Siz appearing in the sum S(K) do not show long-
range order. We can then estimate the diffuse background
by assuming that all the spins point in random directions:
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S(K) = 〈∑i Size
iK·Ri 〉2 ≈ N/4, independent of K; that is, this

term describes incoherent scattering. For a real experiment at
finite temperature, a portion of the sample is likely to be in
the paramagnetic phase. The incoherent scattering from these
disordered spins will yield a diffuse background.

III. EXAMPLE: 6Li IN A RED-DETUNED LATTICE

To demonstrate this technique for a typical experimental
configuration, we simulate a crystal of 6Li atoms evaporatively
cooled to Fermi degeneracy in a far off-resonance optical trap,
then loaded into a 3D simple-cubic lattice created from three
orthogonal far red detuned laser plane-wave standing waves
at 1064 nm. This experiment is currently under way at Rice
University.

The 6Li atoms are prepared in an incoherent balanced mix-
ture of the F = 1

2 , mF = ± 1
2 Zeeman sublevels of the 2S1/2

atomic ground state (denoted ↓ and ↑, respectively). These
two sublevels play a role analogous to the spin- 1

2 electrons in
crystalline solid. An externally applied uniform magnetic field
controls interatomic interactions via a Feshbach resonance
[34]. We choose the direction of the magnetic field to be along
one of the lattice axes for experimental convenience. This field
also determines the quantization axis of the atomic states.

The probe light is tuned near the 2S1/2 → 2P3/2 resonance
of 6Li with wavelength λ = 671 nm. Because λ is similar in
magnitude to the lattice constant a, only a few lattice planes
will produce diffraction. Applying Eq. (7), 0 � l2 + m2 +
n2 � 2.51. The only valid nonmagnetic scattering planes for
our system are (±1, 0, 0), (±1,±1, 0), and permutations of
these indices. [The (000) case represents unscattered light].
The allowed magnetic scattering planes are (± 1

2 ,± 1
2 ,± 1

2 ).
The basic geometry for two of the scattering planes is depicted
in Fig. 2, with the values of the scattering angles shown. In
an experiment one could probe a nonmagnetic peak such as
(0 0 1) to confirm the cubic ordering of the sample and a

FIG. 2. (Color online) Geometry for scattering from a (0 0 1)
plane (left) and a ( 1

2
1
2

1
2 ) plane (right) for a cubic lattice with lattice

spacing a. The scattering planes are shaded. The thin solid line is
normal to the scattering plane. The color of the lattice sites indicates
spin; this figure shows AFM ordering. The arrows represent the
directions of the incoming and outgoing scattered light. The labeled
angles are between the outgoing light and the normal, which is
the same value as the angle between the incoming light and the
normal. The values of the angles are given by the Bragg condition:
cos−1(|Q|/2|k|), assuming lattice spacing of a = 532 nm and probe
wavelength of 671 nm.

TABLE I. Predicted experimental values of maximum scattering
cross section, peak intensity, and scattered power for various magnetic
states [paramagnet (PM), antiferromagnet (AFM), and polarized
(Pol.)] and scattering planes using typical parameters, calculated as
described in the text.

PM AFM Pol.

(0 0 1) Scattering plane
dσ

d�
(cm2) 1.4 × 10−5 1.4 × 10−5 2.3 × 10−3

I (W/cm2) 2.7 × 10−12 2.7 × 10−12 4.5 × 10−10

P (W) 5.7 × 10−12 5.7 × 10−12 9.4 × 10−10

( 1
2

1
2

1
2 ) Scattering plane

dσ

d�
(cm2) 4.7 × 10−8 3.2 × 10−3 7.3 × 10−13

I (W/cm2) 9.4 × 10−15 6.5 × 10−10 1.5 × 10−19

P (W) 2.0 × 10−14 1.4 × 10−9 9.3 × 10−19

magnetic peak such as ( 1
2

1
2

1
2 ) to detect the AFM ordering.

The ratio of these two peak intensities is a measure of the
staggered magnetization, proportional to s2

z and independent
of N .

The Zeeman splitting between states ↑ and ↓ is 2�0 =
2π × 76 MHz ≈ 13� when the external magnetic field is
tuned near the Feshbach resonance at 834 G. The bulk optical
properties of the sample are those shown in Fig. 1 for one atom
per site and equal spin populations.

To estimate the optical signal strength produced by the
scattering, we consider a detector (CCD array or photodiode)
placed r = 0.5 m away from the atoms along the direction of
the outgoing wave vector where we expect a peak. We then
numerically evaluate Eq. (4), assuming a perfectly ordered
sample of N = 413 atoms and a lattice depth of V0 = 10 µK
(about seven lattice photon recoil energies). The value of the
spin structure factor varies depending on the phase we wish
to calculate. For a fully polarized phase, the spin ordering
vector is chosen to be q = 0. For the AFM phase, we use
q = 2π

a
( 1

2
1
2

1
2 ). Finally, for the paramagnetic state we assume

the spin structure factor is independent of direction with a value
of S(K) = N/4, as mentioned in Sec. II B. The maximum
light intensity for the Bragg peak is given by Iout(k′, r) =
Iin
r2

dσ (k′)
d�

, where dσ
d�

denotes the differential cross section in
direction k′. We take the probe laser to be a plane wave with
intensity Iin = 0.5 mW cm−2 and beam waist much larger
than the sample size. The total scattered power is estimated by
numerically integrating over the area of the detector from the
center of the peak radially to the first minimum. The results of
the calculations for the various phases and the two scattering
planes of interested are given in Table I. For the maximal
scattering configurations we find approximately 1 nW of power
in the scattered beam spread over about 10 mrad of angular
divergence. Using commerically available photodiodes (with
an appropriate collecting lens) and integration times of 10 µs

should be sufficient to detect this power. For higher sensitivity,
inexpensive CCD cameras may be used.2

2For example, the Basler Scout series, Model SCA1000-20fm CCD
camera has a sensitivity of about 12 photons per count at 671 nm and
a noise floor of about 80 photons at this wavelength.
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FIG. 3. (Color online) Staggered spin per atom of the system
(red squares) calculated using a quantum Monte Carlo simulation of
63 atoms and maximum scattering cross sections of the magnetic
and nonmagnetic Bragg peaks (blue circles and green triangles,
respectively) as a function of temperature. The cross sections
are calculated using Eq. (4) with the above value of staggered
magnetization for a system of 413 atoms.

By varying the direction of the incoming beam, we find
that samples of this size are sensitive to the direction of
the incoming beam on the ∼10-mrad scale. Given the size
of our simulated crystal, this is consistent with the expected
diffraction limit.

A. Finite temperature

The previous analysis assumed that the sample was com-
pletely ordered. At finite temperature, espectially for T near
TN , the AFM ordering will be incomplete. To the estimate the
effect of finite temperature on the Bragg scattering intensity,
we evaluate Eqs. (4), (8), and (9) for a system with L = 41,
assuming the staggered magnetization as calculated by a
quantum Monte-Carlo calculation for a smaller system with
L = 6. While providing an estimate of the role of thermal
fluctuations, our procedure of scaling up the 216-site result
to 68 921 sites will overestimate the finite-size smearing
of the phase boundary. We used the ALPS (Algorithms and
Libraries for Physical Simulations) package to calculate this
magnetization [35]. As shown in Fig. 3 this extrapolation
predicts that the ( 1

2
1
2

1
2 ) Bragg peak begins to appear as the

temperature goes below TN = 0.95J , which is consistent with
the bulk behavior of the system [36]. By measuring the ratio
of the two Bragg peak intensities we gain a measurement
of sz independent of shot-to-shot fluctuations in N . We also
observe an increase in the incoherent scattering contributions
as temperature increases, similar to Ref. [30].

IV. FURTHER CONSIDERATIONS

A. Multiple scattering

For optically dense samples, multiple scattering cannot
be neglected when calculating the differential cross section.

We calculate the effect of multiple scattering by numerically
solving the Lippmann-Schwinger equation, which is derived
in the Appendix. The key result is the scattering amplitude
[also Eq. (A3)],

Fkf ,λf ;ki,λi
= − 3

2k

h̄�

2
(ekf ,λf

· e∗
m)(em · e∗

ki ,λi
)
∑

j

e−ikf ·rj Aj ,

(10)

where Aj are numerical coefficients found by solving Eq. (A1).
Using these results, we qualitatively study the consequences

of finite optical density (OD), in particular the interplay with
the position uncertainty of the atoms. (The Debye-Waller
factor in Eq. (4) is an approximation of this effect [32].)
In this section we consider a spherical sample and assume
that all lattice sites within a radius R are occupied. Position
uncertainty caused by zero-point motion of the atoms is
modeled as random displacements of the (pointlike) atoms
by a Gaussian distribution with standard deviation σ = �xa.
For the ground state of a sinusoidal well in the tight-binding
regime, �x = 1/πV

1/4
0 , where V0 is the lattice depth in units

of the lattice recoil energy. Typical experimental values are
V0 = 7 and �x = 0.2. The lattice spacing is a = 532 nm and
the wavelength of the probe beam is λ = 671 nm.

1. Fully polarized

We first consider a model for a fully polarized state (all
atoms in the same pseudospin state) with R = 6a (N = 925
atoms). The angular distribution of the differential cross
section is shown in Figs. 4(a)–4(c) for various �x using
both multiple-scattering and Born approximation methods.
The width of the peak is consistent with the diffraction limit
for a sample of this size. As shown in Fig. 4(d), we find that
for high OD, the intensity of the (0 0 1) Bragg peak develops
a local minimum at resonance (zero detuning). On resonance
the OD is highest, and even though the optical scattering cross
section for individual atoms is maximal, the Bragg signal has
a local minimum because of absorption. This effect is similar
to that seen in the experiment by Birkl et al. [27], except in
that case the disorder was caused by temperature.

2. AFM

The AFM cloud is modeled by assigning lattice sites
different pseudospin states according to Néel order. We define
� as the laser frequency detuning relative to the center of the
two atomic resonances. We assume a small Zeeman splitting
�0 = � in the simulation so that the small sample of 925 atoms
is optically dense when the probe laser is tuned directly
between the resonances (OD = 7.4). This splitting is much
smaller than the experimental parameters for 6Li near the
Feshbach resonance, where �0 ≈ 6.5�. The OD of the
simulation is comparable to what one expects with ∼4 × 107

6Li atoms,3 about 40 times the sample size expected in the
experiment.

3The OD is estimated using the bulk properties of the gas: OD ≈
(2ω/c)zκbulk(�), where z = N1/3a is the thickness of the sample.
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FIG. 4. (Color online) (a)–(c) Differential cross section of the
(001) Bragg peak for a fully polarized spherical sample with
N = 925 atoms (OD = 37), resonant probe light, and varying mean
displacements (disorder) �x = σ/a = 0, 0.1, 0.2 [corresponding to
(a), (b), (c)] calculated from Eqs. (10) and (A1) (blue triangles),
as a function of outgoing direction δθ relative to the peak center
(directions shown in Fig. 2). For comparison, we also show the Born
approximation result (red circles). The lines are guides for the eye.
(d) Intensity of the (0 0 1) Bragg peak as a function of detuning
� in the fully polarized case �x = 0, 0.1, 0.2 (solid red, dashed
green, dotted blue lines, respectively). The resonance is at � = 0. (e),
(f) Intensity of the ( 1

2
1
2

1
2 ) Bragg peak as a function of � for a Néel

AFM state with Zeeman splitting between spin states of 2�0 = 2�

for varying �x = 0, 0.1, 0.2 (solid red, dashed green, dotted blue
lines, respectively) and particle numbers (e) N = 925 (OD = 7.4 at
� = 0) and (f) N = 257 (OD = 4.8 at � = 0). The data in (d)–(f)
have been symmetrized about � = 0 to remove the effect of residual
polarization caused by the small sample size. The vertical dotted lines
in (e) and (f) indicate the atomic optical resonance.

The results are shown for different radii R (i.e., different
particle numbers) and disorder �x in Figs. 4(e) and 4(f). We
find that the maximum intensity of the ( 1

2
1
2

1
2 ) Bragg peak

scattered from an optically dense sample [e.g., Fig. 4(e)] is
not found on one of the resonances (as one finds in the Born
approximation or samples with low OD), but rather around
the midpoint in between the ↑,↓ states (� ≈ 0). Disorder
increases incoherent scattering, reducing the amount of light
coherently scattered into the Bragg peaks—the disorder
effectively enhances the OD of the sample in a nonlinear way.

Under typical experimental conditions (finite temperature
in a harmonic trap), the outer shell of the atomic cloud will be
disordered and we expect the AFM order to develop only at
the center. The disordered atoms could then shield the AFM
from the probe light if the OD in the shell becomes too high.
The calculation presented earlier in this article demonstrates
that in this case it is favorable to detune away from the
↑,↓ states to increase the penetration depth of the light and
maximize the signal at the ( 1

2
1
2

1
2 ) Bragg peak. The physical

picture is that for sufficiently large detuning (but between the
two resonances) the disordered portion of the sample only
contributes weak incoherent scattering, but the AFM portion
still exhibits detectable coherent Bragg scattering from the
magnetic planes.

B. Symmetry effects

The ordered state of a classical antiferromagnet is char-
acterized by having a nonzero staggered magnetization s.
In the absence of a symmetry breaking field, s will point
in a random direction on the Bloch sphere (see Fig. 5),
and sequential experiments will find this order pointing in
a new direction. Quantum mechanically, the physics is similar,
with the added feature that the staggered magnetization may
be in a coherent superposition pointing in all directions.
From a practical standpoint, this distinction is minimal: a
measurement will yield a definite (and random) direction
for s. This (classical or quantum) uncertainty means that
the the scattered intensity I of a magnetic Bragg peak will
fluctuate from experiment to experiment. The scattered light
only interacts with the ↑ and ↓ eigenstates and hence is
only sensitive to the z component of the order sz. Assuming
an isotropically distributed s, the probability distribution of
the intensity will be f iso

I (I ) = √
Imax/4I , with a mean value

of Īiso = Imax/3, where Imax is the intensity when the spins
are parallel to z. This purely geometric effect necessitates
repeating the experiment multiple times.

Recent numerical calculations point out that a sufficient
polarization of the sample (|n↑ − n↓| > 0) favors a staggered
magnetization lying in the x-y plane of the Bloch sphere

FIG. 5. (Color online) Illustration of the Bloch sphere representa-
tions of the various AFM configurations. (Left) Isotropic AFM state,
where the spins (large red arrows) may lie anywhere on the Bloch
sphere. The z component of the staggered spin vector is shown by
the small blue arrow. (Center) Canted AFM state, where the spins
are restricted to be near the x-y plane but lift off of it by some
small canting angle (exaggerated here for clarity). In this case, the z

projection of the staggered spin vector is zero. (Right) Canted AFM
state after applying a π/2 pulse. Now the staggered spin has a nonzero
z component (small blue arrow), which may be detected by Bragg
scattering.
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[37,38]. This response to a spin imbalance is analogous to
the response of an electronic antiferromagnet to a magnetic
field and can be explained in terms of an anisotropic spin
susceptibility. As illustrated in Fig. 5, it is relatively easy to
add a finite polarization to x-y AFM order: one simply cants
each spin slightly toward the z axis of the Bloch sphere. On the
other hand, it is much more energetically costly to polarize a
z antiferromagnet: one must completely flip individual spins,
adding 2J energy to the system for each spin that is flipped.
Thus, the lowest energy configuration of a polarized AFM
has the Néel order in the x-y plane. One expects that even
at finite temperature the thermodynamic ensemble will be
dominated by configurations with s lying in the x-y plane.
A simple model is to take the spins of the two sublattices to be
s1,2 = 1

2 [±(cos φ cos ζ )x̂ ± (sin φ cos ζ )ŷ + (sin ζ )ẑ], where
φ is uniformly distributed over 2π radians of a circle and
ζ � 1 is a small fixed canting angle relative to the x-y plane,
which is set by the polarization.

In the canted configuration, the z component of the
staggered magnetization is zero (center frame of Fig. 5),
making the AFM invisible to Bragg scattering or optical
imaging. However, the spins may be reoriented to partially
project along the z axis by an RF π/2 pulse at the Zeeman
splitting frequency, giving a nonzero Bragg signal (rightmost
panel of Fig. 5). The resulting shot-to-shot intensity probability
distribution of the Bragg scattered light is then f cant

I (I ) =
1/

√
π2(I/Imax)(1 − I/Imax) with a mean of Īcant = Imax/2.

The intensity distributions for Bragg scattering of the isotropic
AFM and canted AFM (after applying the π/2 pulse) are
shown in Fig. 6. Note that the π/2 pulse does not change
the probability distribution of the isotropic case because of
symmetry. Measuring these probability distributions provides
a method to experimentally distinguish between the isotropic
and canted AFM states, particularly because of the different
behavior of the two distributions when I ∼ Imax.
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FIG. 6. (Color online) Shot-to-shot probability distributions for
the intensity of the Bragg scattering signal for two cases. The solid
red line shows the case when the staggered magnetization may point
in any direction. The dashed blue line shows the case for a canted
AFM, after applying a π/2 pulse to rotate the spins from the x-y
plane to the x-z plane. The vertical lines indicate the mean values of
the respective distributions. The vertical scale is normalized such that
the areas under both curves are one.

V. CONCLUSION

These calculations confirm that optical Bragg diffraction
is a viable method to observe AFM ordering of atoms in
an optical lattice. The experimental measurement consists
of using a CCD or photodiode to measure the intensities of
the peaks. The presence of the (0 0 1) Bragg peak indicates
cubic ordering, while the ( 1

2
1
2

1
2 ) Bragg peak indicates AFM

ordering. In the actual experiment, only a portion of the
atoms near the center of the crystal will be in the AFM
state. The ratio of the ( 1

2
1
2

1
2 ) intensity to the (0 0 1) intensity

provides a measure of the degree of ordering. Additionally,
the shot-to-shot intensity distribution provides a method to
determine whether the AFM state is isotropic or canted.
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APPENDIX: FULL SCATTERING FORMALISM

Here we derive the full transition matrix (T matrix),
including multiple scattering events. We consider scattering
of a photon off of N two-level atoms located at positions rj

described by the matter-light Hamiltonian

H =
∑

j

h̄ω0,j Sz,j +
∑
k,λ

h̄ωk,λa
†
k,λak,λ

︸ ︷︷ ︸
H0

−
∑

j

dj · E(rj )

︸ ︷︷ ︸
V

,

where h̄ω0,j is the energy splitting between the two levels,
Sz,j = (|e〉j 〈e|j − |g〉j 〈g|j )/2 is the z-component spin oper-
ator for the j th atom in terms of the corresponding ground
state |g〉j and excited state |e〉j , ωk,λ is the frequency of a
photon with wave vector k and polarization λ, a

†
k,λ and ak,λ

are creation and annihilation operators of the same photon,
respectively, d = er is the dipole operator (e is the electron
charge), and E(r) is the quantized electric field at the location
of the atom at r. In the rotating wave approximation (RWA)
the matter-light interaction becomes [39]

V = −i
∑
k,λ,j

gk[eikrj (ek,λ · e∗
m)S+

j ak,λ

− e−ikrj (e∗
k,λ · em)S−

j a
†
k,λ],

where De∗
m = 〈e|j dj |g〉j , e0 = ẑ, e± = ∓(x̂ ± iŷ)/

√
2, S+

j =
|e〉〈g|, S−

j = |g〉〈e|, and gk = D
√

2πh̄ωk/L3 (L3 denotes the
volume of the sample). In the low-intensity limit (much less
than the saturation intensity of the atomic transition), we may
consider scattering of a single photon. Then within the RWA
the Lippmann-Schwinger equation for the outgoing photon
|�(+)〉 = |ki , λi〉 + (E − H0 + iε)−1V |�(+)〉 (where |ki , λi〉
is an incoming plane-wave photon with wave vector ki and
polarization λi , ε is a positive infinitesimal) closes with the
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ansatz

|�(+)〉 =
∑
k,λ

ψk,λ|k, λ〉 +
∑

j

ψjS
+
j |0〉,

and one obtains a linear equation for effective amplitudes Aj

[related to ψj by ψj = −igk(e∗
kj ,λj

· em)Aj ],(
�Ej + i

h̄�

2

)
Aj = eikj ·rj + h̄�

2

∑
l �=j

Gj lAl, (A1)

where �Ej is the (renormalized) detuning at site j and
� = 4ω3

0D
2/(3h̄c3) is the linewidth of the transition. The

dimensionless function Gj l = βjl − iγjl has [40]

βjl = 3

2

{
−p

cos(krjl)

krjl

+ q

[
sin(krjl)

(krjl)2
+ cos(krjl)

(krjl)3

]}
,

γjl = 3

2

{
p

sin(krjl)

krjl

+ q

[
cos(krjl)

(krjl)2
− sin(krjl)

(krjl)3

]}
,

where rjl = |rj − rl| and k = |kj | = |kf |,4 and p and q

depend on whether one considers an m = 0 or m = ±1
transition. One has p = 1 − (ẑ · r̂j l)2, q = 1 − 3(ẑ · r̂j l)2 for

4Note that the RWA neglects retardation effects (or violates
causality) and therefore our expression for Gj l is valid only when
krjl � 1, which is the experimentally relevant limit.

m = 0 and p = 1
2 [1 + (ẑ · r̂j l)2], q = 1

2 [3(ẑ · r̂j l)2 − 1] for
m = ±1 [40]. The T matrix is

Tkf ,λf ;ki ,λi
= 〈kf , λf

∣∣V ∣∣�(+)〉
= g2

k (ekf ,λf
· e∗

m)(em · e∗
ki ,λi

)
∑

j

e−ikf ·rj Aj . (A2)

Equation (A1) includes the effects of multiple scattering to
all orders, provided one can solve for Aj . In the limit of
low OD of the sample, multiple scattering can be neglected
and one obtains the Born approximation result Aj = (�Ej +
i h̄�

2 )−1eiki ·rj or

Tkf ,λf ;ki ,λi
= g2

k (ekf ,λf
· e∗

m)(em · e∗
ki ,λi

)

×
∑

j

ei(ki−kf )·rj

(
�Ej + i

h̄�

2

)−1

.

We finally note that the scattering amplitude Fkf ,λf ;ki ,λi
is

related to the T matrix through

Fkf ,λf ;ki,λi
= − L3k

2πh̄c
Tkf ,λf ;ki,λi

= − 3

2k

h̄�

2
(ekf ,λf

· e∗
m)(em · e∗

ki ,λi
)
∑

j

e−ikf ·rj Aj .

(A3)

In the Born approximation this reduces to Eq. (2).
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[19] S. Fölling et al., Nature (London) 434, 481 (2005).
[20] I. B. Spielman, W. D. Phillips, and J. V. Porto, Phys. Rev. Lett.

98, 080404 (2007).
[21] T. Rom et al., Nature (London) 444, 733 (2006).
[22] M. Kozuma, L. Deng, E. W. Hagley, J. Wen, R. Lutwak,

K. Helmerson, S. L. Rolston, and W. D. Phillips, Phys. Rev.
Lett. 82, 871 (1999).

[23] C. G. Shull and B. N. Brockhouse, in Nobel Lectures in
Physics (1991–1995), edited by G. Ekspong (World Scientific,
Singapore, 1997), p. 107.

[24] G. L. Squires, Introduction to the Theory of Thermal Neutron
Scattering (Dover, New York, 1997).

[25] P. M. Platzman and N. Tzoar, Phys. Rev. B 2, 3556 (1970).
[26] M. Bruneland and F. de Bergevin, Acta Crystallogr. A 37, 324

(1981).
[27] G. Birkl, M. Gatzke, I. H. Deutsch, S. L. Rolston, and W. D.

Phillips, Phys. Rev. Lett. 75, 2823 (1995).
[28] M. Weidemüller, A. Hemmerich, A. Görlitz, T. Esslinger, and
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