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We investigate pairing in a two-component degenerate gas of trapped fermionic 6Li
atoms at a broad Feshbach resonance by in-situ imaging of real-space density distributions.
From even mixtures of the two spin components, we measured the β factor, describing
the universal energy of strongly interacting paired fermions. In uneven spin mixtures,
pairing and corresponding phases show a temperature dependence that is consistent with
a phase diagram having a tricritical point. At the lowest temperatures, an unpolarized core
separates from the excess unpaired atoms by a sharp boundary, which is consistent with a
phase separation driven by a first-order phase transition. Moreover, the unpolarized core
deforms with increasing polarization, in violation of local density approximation (LDA). In
contrast, at higher but still degenerate temperatures, an unpolarized central core remains
up to a critical polarization, but does not deform. In this case, the boundaries are not
sharp, indicating a partially-polarized shell between the core and the unpaired atoms,
consistent with a second-order phase boundary.

1. INTRODUCTION

In fermionic systems, the formation of pairs between two constituent components is
the essential ingredient of superfluidity and superconductivity. By use of a magnetically-
tuned Feshbach resonance, several groups have recently explored the crossover from a BCS
superfluid with large Cooper pairs to a Bose-Einstein condensation (BEC) of diatomic
molecules in a two spin state mixture of ultracold atomic gases [1–7]. These experiments
have advanced our understanding of the strongly interacting regime lying between these
two extremes. Another opportunity opened up by experiments with ultracold atoms
is the study of possible pairing mechanisms and corresponding phases in systems with
mismatched chemical potentials, a topic of active debate. In contrast to the difficulties
in generating magnetized superconductors, mismatched Fermi surfaces can be readily
realized by creating an imbalance between the populations of two spin components in
a gas of trapped ultracold fermionic atoms, as was recently demonstrated [8–11]. New
exotic pairing states of matter are predicted for the unbalanced systems, such as the
FFLO phase with pairing of nonzero center-of-mass momentum [12,13], the Sarma [14] (or
the breached pair [15]) phase, with gapless excitations, and the deformed Fermi surface
(DFS) phase [16], where the local Fermi surfaces of the two components deform from
spherical to maximize their overlap. In addition, recent theoretical calculations show that
phase separation between pairs and excess unpaired atoms is another possible outcome
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for a strongly interacting two-component gas [17–21]. These studies of systems with
mismatched Fermi surfaces may have important implications for our understanding of
unconventional superconductors, nuclei, compact stars, and quantum chromodynamics.

In this paper, we review our experiments on a strongly interacting trapped Fermi gas
of 6Li atoms with in-situ images of real-space density distributions.

2. APPARATUS AND GENERAL METHODS

Our methods for producing a two-component degenerate Fermi gas with imbalanced
populations have been discussed in several previous publications [7,9,11]. A Zeeman
slower is used to slow thermal atomic beams of both isotopes of lithium: bosonic 7Li, and
fermionic 6Li. A magneto-optical trap is used to capture and trap the slowest portion of
these pre-cooled atoms. The atoms are next transferred to an Ioffe-Pritchard magnetic
trap with a clover-leaf configuration, where they are cooled by rf evaporation. Since spin
symmetry prevents spin-polarized fermionic 6Li from undergoing s-wave interactions, the
simultaneously trapped and cooled 7Li atoms function as a thermal reservoir for the 6Li
atoms. Two rf frequencies are used to remove the most energetic 7Li and 6Li atoms,
and the remaining 7Li atoms rethermalize through collisions among themselves, while the
6Li atoms rethermalize through collisions with the 7Li atoms. At the end of evaporation
cycle, the 6Li atoms are transferred to an optical trap, while the remaining 7Li atoms are
removed by rf spin flips.

The optical trap is formed from a single focused infrared laser beam operating at wave-
length of 1080 nm. There is additional confinement provided by magnetic field curvature
in the axial direction. The combined optical and magnetic trapping potential is approx-
imately harmonic. In the optical trap, the 6Li atoms are transferred to the energetically
lowest Zeeman sublevel, F = 1/2, mF = 1/2 (state |1〉), in a nearly uniform bias field of
754 G by a single rf sweep. This sublevel and the second lowest Zeeman sublevel, F = 1/2,
mF = −1/2 (state |2〉), have a broad Feshbach resonance at 834 G [22,23], but neither
of them is magnetically trappable. Typically 3×106 atoms in state |1〉 at a temperature
T ≈ 6 μK are confined in the trap. To create an incoherent spin mixture of state |1〉 and
state |2〉, a series of 100 saw-tooth frequency ramps are swept through the rf transition
resonance between the two states. The use of multiple sweeps ensures that an exact 50/50
mixture may be created even for the case of moderate single sweep efficiency. However,
if the rf power is significantly reduced, an imbalanced mixture may also be produced.
After preparation of the spin mixture, the atoms are evaporatively cooled by reducing the
optical trap depth over a period of approximately 1 s. Thermalization is achieved through
collisions between atoms from the two different states. The temperature of the gas can be
controlled by evaporating to different final trap depths U0. Towards the end of evapora-
tion, we adiabatically sweep the magnetic field to 834 G, where all the experiments in this
paper are performed. After a holding time for thermalization and stabilization, states |1〉
and |2〉 are then sequentially and independently imaged in the trap by absorption using
a probe laser beam on resonance with the 22S1/2 to 22P3/2 atomic transitions specific to
each state. The two probes are each 3 μs in duration and are separated in time by 27
μs. The delay is minimized to prevent probe-induced broadening of the second image
[9]. The number measurements of the two states, N1 and N2, and global polarization
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P = (N1 − N2)/(N1 + N2), between 0 and 1, are obtained from analyzing these images.
The temperature of the gas is evaluated by fitting the profiles of gases deliberately pre-
pared as P = 0 to fermionic nonzero-temperature Thomas-Fermi distributions. ˜T , the
fitted temperature, is expected to be closely related to the actual temperature [5]. More-
over, many properties of the strongly interacting gas can be extracted from real-space
density distributions given by these in-situ images.

3. RESULTS

3.1. Measurement of the β factor
When the interaction between two fermionic components is maximally strong (“uni-

tarity” limit), the mean-field contribution of interaction in terms of the local chemical
potential can be expressed as UMF (r) = βεF (r) [24], where β is an universal many-body
parameter. Since β doesn’t depend on any specifics of the interacting fermions, an ac-
curate determination of β relates to any strongly-interacting fermionic system beyond
atomic gases. In our experiments, the unitarity limit is reached by tuning the interaction
between two spin components via a Feshbach resonance. In this limit, an unpolarized (P
= 0) trapped gas is expected to have a reduced chemical potential in the universal form
EF (1 + β)1/2, where the β factor can be determined by measuring its spatial size. Axial
density profiles are obtained by integrating the 2D column density distributions along the
remaining radial direction, and are insensitive to any residual radial broadening effects
[9]. The axial density profiles are then fitted to T = 0 Thomas-Fermi distributions for
fermions, A(1− z2

R2 )
5/2, where A and R are adjustable fitting parameters and z is the axial

position. The β factor is given by β = (R/RTF )4 − 1 [4,25,26], where RTF = (2kBTF

mω2
z

)1/2

is the axial Thomas-Fermi radius for noninteracting fermions and m is the atomic mass,
ωz is the axial trapping frequency, and the Fermi temperature TF is calculated for each
state from the measured number N1 and N2. We found that R/RTF = 0.825 ± 0.02,
giving β = −0.54 ± 0.05. This value is in excellent agreement with previous measure-
ments [4,5,24,27], but with substantially improved uncertainty. Our measurement is also
consistent with β = −0.58 ± 0.01 obtained from two Monte Carlo calculations [18,28,29]
and with β = −0.545 from a calculation reported in [25].

3.2. Deformation and Phase Separation
Pairing in a two-component gas with unequal populations results in a rich phase diagram

that depends on temperature, polarization, and interaction strength of the components in
the gas. In this paper, we present experiments performed in the region where interactions
are in the unitarity limit.

Shown in Fig. 1 are a series of images corresponding to a range of P from 0 to 0.95. The
difference distributions, obtained by subtracting the minority (|2〉) from the majority (|1〉)
column density distributions, reveal a central evenly paired core, which we interpreted
as a phase separation [11]. In this case, the state |2〉 distribution represents the core,
while the difference corresponds to the excess, unpaired fermions. The central cuts of
column density show that the boundaries between the superfluid core and the polarized
normal phase are sharp [11], consistent with the usual convention that phase separation
is associated with a first-order phase transition.
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Figure 1. In-situ absorption images of a polarized Fermi gas prepared at our lowest
temperature of ˜T ≤ 0.05TF , where TF is the Fermi temperature. The radial and axial
frequencies at the trap depth are ωr � (2π) 325 Hz, and ωz � (2π) 7.2 Hz. From the top
to the bottom, the three images in each sub-figure correspond to the column density of
state |1〉, state |2〉, and the difference of the two, respectively. The polarizations are (a)
P = 0, (b) P = 0.18, (c) P = 0.37, (d) P = 0.60, (e) P = 0.79, and (f) P = 0.95. The
field of view for these images is 1654 μm by 81 μm. The displayed aspect ratio is reduced
by a factor of 4.4 for clarity. (Reprinted from Ref. [11].)

An apparent, though, unexpected feature is that the radial size of the minority spin
remains approximately the same as that of the majority spin, while the distribution of
the minority becomes markedly less elongated as P increases. This deformation results in
the bunching of unpaired atoms at the axial poles, and the lack of them in the equatorial
shell, as can be seen in the difference distributions in Fig.1. To quantify this deformation,
the aspect ratio, Rz/Rr, for both states are plotted vs. P in Fig. 2. While the majority
state aspect ratio changes little, that of the minority (representing an evenly paired core)
decrease by a factor of 10 when going from completely unpolarized (P = 0) to completely
polarized (P = 1).

It is surprising to observe such deformations since they are in violation of local density
approximation (LDA), In the LDA, one assumes that all local physics is isotropic, so
that the density should follow the isopotential lines of the trap [25,30–35]. Several LDA-
violating mechanisms, enhanced by confinement in a high aspect ratio trapping potential,
may explain these observations [36,37]. In particular, De Silva and Mueller accounted for
surface tension between the normal and superfluid phases, and showed that it can result
in deformations of the minority component that are quite similar to those observed here
[37].

Cylindrical symmetry allows for the use of an inverse Abel transform to reconstruct
the true 3D density distributions n(r, z) from the 2D column densities. The ratio of the
central densities of the two states, n1(0, 0)/n2(0, 0), obtained from the reconstructed 3D
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Figure 2. Aspect ratio vs. P. The ratio of the axial to the radial dimensions, Rz/Rr,
is shown for state |1〉 by circles and for state |2〉 by crosses. The radial dimension,
Rr, is determined by fitting the column density profiles to zero-temperature, fermionic
Thomas-Fermi distributions. The axial distributions are distinctly non-Thomas-Fermi-
like, so Rz is found by a simple linear extrapolation of the column density to zero. The
uncertainty in P is 0.04. The average Fermi temperature is TF ≈ 430 nK, where we define
TF = h̄(ω2

rωz)
1/3(6N1)

1/3/kB. (Reprinted from Ref. [11].)

distributions, are plotted vs. P in Fig. 3(a). The figure indicates that the central core
remains unpolarized until at least P ≈ 0.9. For P > 0.9, the increase in n1(0, 0)/n2(0, 0)
may be explained by higher temperatures for these data that arise from inefficiencies in
evaporative cooling at very high P .

3.3. Finite temperature observations
Recent theoretical studies on strongly interacting polarized Fermi gases have suggested

a phase diagram with three distinct phases connected by a tricritical point [33,38–40]:
a phase-separated regime, where an unpolarized superfluid separates from a completely
polarized normal gas, a polarized superfluid phase, and a polarized normal phase. The
phase-separated phase is preferred at low T, and is the only phase at T = 0 for nonzero
P . The polarized superfluid phase at low P , and the normal phase at high P appear as
T increases, and both of them are expected to have a first-order phase boundary with
the phase-separated phase. The three phases meet at the tricritical point, and for higher
temperatures, phase-separation is no longer favorable.

We had previously found that phase separation occurred only for P > Pc, where Pc ≈
0.1 [9]. For P < Pc, the observations were consistent with a non-phase-separated polarized
superfluid. The present data, however, exhibits phase separation for arbitrarily small P .
Since the previous work [9], we have improved the efficiency of the evaporation, and were
then able to obtain fitted temperatures that are about half of those previously attained.
This temperature-dependent behavior is consistent with a phase boundary between a
phase-separated regime and a polarized superfluid (Sarma or breached-pair phase) at
nonzero temperature. To further test this hypothesis, we deliberately produced higher
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Figure 3. Ratio of the central densities vs. polarization. (a) ˜T ≤ 0.05 TF , corresponding
to the data shown in Fig. 2; (b) ˜T ≈ 0.2 TF . The dotted lines correspond to [(1+P )/(1−
P )]1/2, the expected central density ratio for a harmonically confined, non-interacting gas
at T = 0. (Reprinted from Ref. [11].)

temperatures by stopping the evaporation trajectory at a higher trap depth, resulting in
˜T ≈ 0.2 TF . The absorption images of the lower ( ˜T ≤ 0.05 TF ) and higher ( ˜T ≈ 0.2
TF ) temperatures are shown in Fig. 4(a) and 4(c), respectively. It is apparent that
the density distributions of the two components of the higher temperature gas show no
deformations, in contrast to those of the colder case. Moreover, the higher temperature
data does not exhibit the sharp phase boundary between the central core and the normal
region, observed at lower temperatures. The absence of deformation can also been seen
in the axial density distributions: in the colder case (Fig. 4(b)), the axial difference
distribution shows the characteristic double-peaked structure, observed previously [9],
while that of the warmer cloud (Fig. 4(d)) exhibits the flat-topped distribution expected
for a paired core with no deformation, similar to the observations reported in Ref. [10].
We also extracted the ratio of the central densities of the two states, n1(0, 0)/n2(0, 0),
for the higher temperature data, and plot it vs. P in Fig. 3(b). The central densities
in this case remain equal until a critical polarization of P ≈ 0.6 − 0.7 is reached, which
is again consistent with the observations reported in Ref. [10]. These results support
the suggestion of a temperature dependent transition between a low-temperature phase
separated state and a higher temperature polarized superfluid [39,40].

4. CONCLUSIONS

Ultracold atomic Fermi gases are fascinating for systematic investigations of pairing
because of the ability to tune their physical parameters, including interaction strength,
polarization, and temperature. They offer clean and controllable experimental systems
to study states of matter of relevance to other areas of physics. We have presented a
discussion of our experiments on strongly-interacting two-component Fermi gases, espe-
cially with unequal spin populations. At the lowest temperatures, we observed pairing
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(d)(c)

(b)(a)

Figure 4. In-situ absorption images (left) and integrated profiles (right) for two temper-
ature regimes. (a),(b): P = 0.50, N1 = 1.5 × 105, with ˜T ≤ 0.05 TF ; (c),(d): P = 0.45,
N1 = 3.7 × 105, with ˜T ≈ 0.2 TF . (Reprinted from Ref. [11].)

induced real-space deformations of a polarized Fermi gas in a highly elongated, but still
three-dimensional, trap. The sharp phase boundaries between the superfluid core and the
completely polarized normal phase are consistent with expectations for a first-order phase
transition. At elevated, though, still degenerate temperatures, deformations disappear,
and a partially polarized shell is observed between a uniformly paired core and the fully
polarized outer shell. These observations suggest the existence of a tricritical point in
the phase diagram where the superfluid-normal transition changes from second-order to
first-order as the temperature is lowered.

We thank H.T.C. Stoof for helpful discussions, and E. Mueller for helpful discussion and
for providing the Abel transform code. This research is supported by the NSF, NASA,
ONR, the Welch Foundation.
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