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Collisions of matter-wave solitons
Jason H. V. Nguyen1, Paul Dyke2, De Luo1, Boris A. Malomed3 and Randall G. Hulet1*
Solitons are localized wave disturbances that propagate
without changing shape, a result of a nonlinear interaction
that compensates for wave packet dispersion. Individual
solitons may collide, but a defining feature is that they pass
through one another and emerge from the collision unaltered
in shape, amplitude, or velocity, but with a new trajectory
reflecting a discontinuous jump. This remarkable property is
mathematically a consequence of the underlying integrability
of the one-dimensional (1D) equations, such as the nonlinear
Schrödinger equation, that describe solitons in a variety of
wave contexts, including matter waves1,2. Here we explore the
nature of soliton collisions using Bose–Einstein condensates
of atoms with attractive interactions confined to a quasi-1D
waveguide. Using real-time imaging, we show that a collision
between solitons is a complex event that di�ers markedly
depending on the relative phase between the solitons. By
controlling the strength of the nonlinearity we shed light on
these fundamental features of soliton collisional dynamics, and
explore the implications of collisions in the proximity of the
crossover between one and three dimensions where the loss
of integrability may precipitate catastrophic collapse.

The name ‘soliton’ is meant to convey the particle-like qualities of
localized and non-dispersing wave packets, and is often reserved for
those solitarywaves that pass throughone anotherwithout changing
form. The wave packets studied here are not true solitons owing
to the presence of a harmonic confining potential which breaks
integrability. Furthermore, as quasi-1D objects, they reside near
the border between 1D and 3D, where integrability is also broken.
Nonetheless, the proximity to this border does not necessarily affect
the soliton dynamics over experimentally relevant timescales. We
will thus use the term soliton more generally to refer to non-
dispersing wave packets created by a nonlinearity. Although the
propagation of individual solitons is now well understood, having
been extensively studied both experimentally and theoretically3,
their interactions with each other have been much less explored.
Although true solitons pass through one another, they nonetheless
exhibit an effective interaction produced by interference of the two
wave packets, with a force falling off exponentially with separation4.
The sign and magnitude of the interaction depends on the relative
phase, as was first demonstrated experimentally for optical solitons
in both the time5 and spatial6 domains.

Studies ofmatter-wave solitons havemainly examined properties
of single solitons7–10, with the study of soliton interactions limited to
those occurring in soliton trains8,11 and collisions between multiple
solitons resulting from a quench12. We provide further insight
into the collisional dynamics of matter-wave solitons through the
controlled formation of soliton pairs, and explicitly demonstrate
that the discontinuous jump observed in soliton collisions13 is a
general property of the nonlinear interaction.

Our methods for producing a degenerate gas of 7Li atoms
have been described previously14 and are given in the Methods
section. A Bose–Einstein condensate of atoms in the |F=1,mF=1〉
state is formed by evaporative cooling at a scattering length of
a=+140a0 and is confined in a cylindrically symmetric harmonic
trap with radial and axial oscillation frequencies of ωr/2π=254Hz
and ωz/2π = 31Hz, respectively. After forming the condensate, a
cylindrically focused blue-detuned Gaussian laser beam directed
perpendicular to the long axis of the confining potential is used to
cut the condensate in half, and acts as a barrier between the two
condensates (Fig. 1a). The scattering length is then adiabatically
ramped from a=+140a0 to a=−0.57a0 via the broadly tunable
Feshbach resonance of the |F=1,mF=1〉 state15 to form a pair of
solitons with a centre-to-centre separation of 26 µm and near equal
amplitude (N ≈ 28,000 atoms/soliton). Once the pair is formed, the
barrier is quickly (t<60 ns) turned off. Thus, the solitons suddenly
find themselves at the classical turning points of the harmonic
trap and begin to accelerate towards the centre. We confirm that
these wave packets are non-dispersive by observing the absence
of expansion when the axial confinement frequency is suddenly
reduced, whereas a wave packet with a small, repulsive scattering
length rapidly expands (Supplementary Fig. 1).

We find that the two solitons interact with a randomly distributed
relative phase over different experimental runs, so we use a
minimally destructive phase-contrast imagingmethod, polarization
phase-contrast imaging16, to obtain multiple images of the soliton
pair as they oscillate and collide in the harmonic trap. This
imaging technique plays a key role in observing and interpreting
the collisional dynamics because it allows us to take multiple images
within a single realization of the experiment (Methods).

We infer the relative phase difference through comparison
with numerical simulations of the 1D and 3D Gross–Pitaevskii
equations (GPEs). Figure 1b,c shows two experimental realizations
in which the relative phase difference is 1φ≈0 and 1φ≈π ,
respectively. Images are taken every one eighth of a trap period
(τ=32ms). Figure 1b,c shows trajectories over one complete
period, corresponding to two collisions. For 1φ≈0, a clear anti-
node is observed during the collision at the centre, giving the
appearance of an attractive interaction, whereas in the1φ≈π case,
interference results in a central node and the interaction between
solitons is effectively repulsive.

The quasi-1D nature of our system, coupled with the ability to
form soliton pairs with a strong nonlinearity, allows us to observe
the rich dynamics inherent in a system at the edge of integrability.
The strength of the nonlinearity is parametrized by N/Nc, where
Nc = 0.67ar/a is the critical atom number, ar=

√
h̄/mωr , and

m is the atomic mass. A soliton is unstable to collapse for
N > |Nc| (ref. 17). Although collapse is relevant only for attractive
interactions, we also use N/Nc to parametrize the strength of the
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Figure 1 | Schematic of the experiment and images of phase-dependent collisions. a, Schematic showing the process of soliton-pair formation. Beginning
with the bottom frame, the potential is shown as a black-dashed line with a condensate density profile shown in solid blue. After forming a condensate, the
barrier is turned on to split the condensate in two. The scattering length is ramped from a=+140a0 to a=−0.57a0 and pairs of solitons are formed. The
barrier is quickly turned o�, and the solitons move towards the centre of the trap. b, Time evolution of a soliton pair (N/Nc=−0.53) after the barrier is
turned o�. Solitons are accelerated towards the centre of the trap and collide at a quarter-period (τ=2π/ωz=32ms). The density peak appearing at the
centre-of-mass indicates that this is an in-phase (1φ≈0) collision. c, Similar to b, except the density node appearing at the centre-of-mass indicates an
out-of-phase (1φ≈π) collision.
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Figure 2 | Phase-dependent collisional dynamics. a, A collision between two solitons (N/Nc=−0.53) resulting in collapse. During the collision, the density
exceeds a critical value and becomes unstable against collapse. No remaining atoms are observed. b, A collision between two solitons (N/Nc=−0.53)
resulting in a merger. The remaining atom number after the collision is the same as that of a single soliton before the collision. c, Out-of-phase collisions
between two solitons after allowing them to oscillate for ten trap periods.

nonlinearity for repulsive condensates. For values ofN/Nc=−0.53,
we observe that in-phase collisions (1φ ≈ 0) sometimes result
in annihilation (Fig. 2a) or fusion of the soliton pair (Fig. 2b),
although more typically we observe partial collapses in which
the atom number and the oscillation amplitude are reduced after
multiple collisions. These effects can be understood as the result of
density-dependent inelastic collisions in which the system becomes
effectively 3D (refs 18–20). Similar effects have been observed
in nonlinear optics21. We find from the GPE simulations that

collisions with 1φ=0 and N/Nc<−0.5 are unstable to collapse.
The observation that collisions with 1φ ≈ 0 do not always lead
to collapse (for example, Fig. 1b) is consistent with the shot-to-
shot variation in N of∼20% (Methods). For the same nonlinearity,
out-of-phase collisions (1φ ≈ π) are extremely robust against
collapse and survive many oscillations in the trap, as predicted
theoretically18,20,22. Although on the edge of integrability, we have
observed solitons with N/Nc=−0.53 and 1φ=π to survive more
than 20 collisions (Fig. 2c).
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Figure 3 | Tagged trajectory of soliton collision. A pair of solitons is formed
with a ratio of 2:1 in atom number. The resultant collision appears to be
repulsive, indicated by the density minimum appearing between the pair at
t= 1/4τ and 3/4τ . However, by following the trajectories of individual
solitons, we observe that they actually pass through one another in the
course of each collision.

The defining property of solitons passing through one another
without change of shape, amplitude, or speed seems to be at
odds with the observations presented in Fig. 1c, where solitons
with 1φ=π apparently reflect from one another. This paradox
is resolved by noting that the effective interaction is a wave
phenomenon4, where interference gives the appearance of reflection
when, in fact, the solitons do pass through one another. We
experimentally demonstrate this by forming pairs of solitons with
unequal atom numbers by removing atoms from one side using
a short duration, near-resonant pulse of light before ramping the
field to form solitons. This allows us to identify, or tag, a particular
soliton and to follow its trajectory before and after the collision. In
Fig. 3 we show one such realization, in which a soliton pair was
formed with a 2:1 ratio in atom number. Although a minimum
does appear between the solitons during the collision, as expected
for an effectively repulsive interaction, the trajectories show that
they do pass through one another. The experiment does not
rule out the possibility that the solitons reflect while exchanging
particles during the collision. The 1D GPE simulations, however,
demonstrate that particle exchange is a relatively small effect for
the large collisional velocity in our experiment, in agreement with
previous theoretical studies19,20.

A close inspection of the oscillations shown in Fig. 2c reveals
that the solitons oscillate at a higher frequency than the usual dipole
frequency,ωz . This increased oscillation frequency is a consequence
of a jump in the phase of the trajectories of the colliding,
harmonically confined, solitons. Without axial confinement, the
phase jump manifests as a sudden change in position relative to the
original trajectory, as shown in the simulation of Fig. 4a. Although
the phase of the trajectory is modified by the collision, the speed of
the soliton following the collision is not. The jump is a consequence
of the nonlinearity of the system2, and was first observed with
optical solitons13.

We studied this effect by measuring the oscillation frequency of
pairs of solitons for different strengths and sign of the nonlinearity

3

2

1

0

3

2

1

0

3

2

1

0
00

0
20 40

Time (ms)

t (
a.

u.
)

z (a.u.)
60 80

−0.06
−0.5 0.0

N/Nc

N/Nc  = −0.53

N/Nc = 0

N/Nc = +0.55

0.5

−0.04

−0.02

Analytic approximation

1D GPE

Experiment

0.00

0.02

0.04

0.06

Δ
z/

z 
ω

ω

a b c

U(
t)

 (
z)

ħω
U(

t)
 (

z)
ħω

U(
t)

 (
z)

ħω

Figure 4 | Frequency shift due to mean-field interaction between solitons. a, Simulated trajectory without an axial potential, in arbitrary units (a.u.). The
dashed-white lines show the soliton trajectories in the absence of interaction. b, The harmonic potential energy per atom, U(t) (Methods), is plotted for
di�erent strengths of the nonlinearity. Each data point is the mean of five di�erent experimental runs (blue points). The red lines are the results of a fit to
determine the oscillation frequency. The error bars correspond to the standard error of the mean. c, The relative frequency shifts determined from the fits
to the experimental data are plotted versus the nonlinearity strength (blue squares). The error bars correspond to the standard error of the fit for1ωz/ωz.
The error bars for N/Nc are the standard error of the mean for five measurements of N. In addition, the systematic uncertainty in N/Nc is estimated to be
23% for |a|'0.5a0 (Methods). Relative shifts were also determined by numerically solving the 1D GPE (red points). An analytical approximation
determined solely by the incoherent density–density terms in the GPE is shown by the dashed line, as described in Methods.
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(a condensate with a> 0 also oscillates without dispersion in the
presence of harmonic confinement23). At each value of N/Nc, the
measured axial density profiles were used to calculate the average
harmonic potential energy per atom at different times during the
oscillation, and subsequently fitted to determine the oscillation
frequency (Methods). Oscillations forN/Nc=−0.53,N/Nc=0 and
N/Nc = +0.55 are plotted in Fig. 4b for a total of three trap
periods, in each case. Because the potential energy per atom is
plotted, a total of six oscillations are observed. The frequency
for the attractive (repulsive) interactions clearly leads (lags) when
compared to the non-interacting (a=0) case. The relative frequency
shifts are plotted in Fig. 4c and we find them to be in reasonable
agreement with numerical simulations obtained by solving the 1D
GPE. We observe that the relative shift also provides a sensitive
measurement of the zero crossing, which is in excellent agreement
with a previous determination15. The frequency shift is independent
of 1φ, indicating that it is unrelated to the phase-dependent
interactions previously discussed.

Wehave developed a simple analytical approximation to calculate
the frequency shift. The shift arises from the mean-field interaction
in which one soliton changes the potential landscape experienced
by the other soliton. The phase shift is dominated by the incoherent
(density–density) terms in the interaction, and we neglect all other
interaction terms in the GPE in comparison. This approximation is
valid for relatively weak nonlinearity and for fast-moving solitons
(Methods). Although a phase shift is expected in integrable systems,
the analytical approximation accounts for harmonic confinement,
thus providing an estimate of the frequency shift for either sign of
the nonlinearity. The analytically predicted relative frequency shift
is 1ωz/ωz =−0.67(N/Nc)a4z/πz3

0ar , in which z0 is the oscillation
amplitude of a single soliton and az (ar ) is the axial (radial) harmonic
oscillator length. N/Nc is negative for a< 0. This approximation
provides a simple, intuitive picture. For a<0, the attraction between
atoms accelerates the solitons as they approach one another, and
decelerates them as they move away. The same occurs for a>0,
but with opposite sign. A similar effect has been observed for
repulsive condensates, in which oscillations of one condensate
induced motion in the other24,25.

Our studies elucidate the role of integrability, relative phase,
spatial dimensionality, and mean-field interactions in soliton
collisions. A natural extension of this work would involve control
over the relative phase between solitons, and better control of the
strength of the nonlinearity. This would enable us to study collisions
in amore controlledmanner, providing the ability to further explore
the transition between integrable and non-integrable systems, and
to study the formation of soliton molecules26. Finally, this geometry
may be applicable to atom soliton interferometry, demonstrated
recently using a Bragg beam splitter27 rather than the tunnel barrier
adopted in our geometry.

Methods
Apparatus. The primary difference between the apparatus used here and that
which was described previously14 is that a pair of perpendicularly oriented laser
beams, derived from a single fibre laser operating at 1,070 nm, provide
cylindrically symmetric harmonic confinement. The beam is divided into two
separate paths, directed parallel and perpendicular to the magnetic field axis, and
focused at the atoms to 1/e2 radii of 28 µm and 105 µm, respectively.

The magnetic field is controlled using a pair of coils in the Helmholtz
configuration, and allows us to vary the scattering length across a broad region.
Initially, the BEC is formed at a field of 716G, corresponding to a scattering
length of a≈140a0 (ref. 28). Once the BEC is formed, a blue-detuned Gaussian
beam is turned on to cut the condensate in half and act as a high barrier between
the two halves. The field is adiabatically ramped down (t=750ms) to a final
scattering length of a=−0.57a0. We find experimentally that this procedure
produces two solitons, which interact with a randomly distributed relative phase.

To measure the oscillation frequencies for different nonlinearities, the final
scattering length is varied between a=−0.57a0 and a=+0.37a0, corresponding
to nonlinear strengths of N/Nc=−0.53 and N/Nc=+0.55, respectively.

The barrier is a cylindrically focused beam, blue-detuned by 900GHz from
the 2S–2P resonance, with a 1/e2 radius of 2mm perpendicular to the
condensate, and a 1/e2 radius of 5.6 µm along the condensate axis. A barrier
height of approximately 2 µK was used to split the condensate, and to maintain a
centre-to-centre separation of 26 µm between solitons.

Polarization phase-contrast imaging (PPCI) was used to minimally perturb
the atoms, allowing us to take multiple images during a single experimental run.
Because the relative phase of solitons varies between experimental runs, the use
of this technique was crucial for interpreting the collisional dynamics. PPCI
exploits the birefringence of the scattered light from atoms in a strong magnetic
field. The scattered light is interfered with the probe light using a linear polarizer.
The resulting image is simply related to the column density distribution16. With
this technique the laser may be far detuned from resonance (35Γ in this case,
where Γ =5.9MHz), minimizing the number of photons scattered during the
imaging process. Furthermore, the 1/e2 beam radius of approximately 11mm
provides a uniform intensity profile across the soliton pair so that any phase shift
imprinted on the solitons from the imaging beam is common for the pair.

Oscillation frequency. The axial density, n1D(z , t), was calculated for each image
and used to determine the potential energy per atom from:

U (t)=
1

Nh̄ωz

∫
∞

−∞

n1D(z , t)
[
1
2
m(ωzz(t))2

]
dz

Analytical approximation of frequency shift. The quasi-1D GPE is:

ih̄
∂ψ

∂t
=−

h̄2

2m
∂2ψ

∂z2
+

1
2
mω2

zz
2ψ+g1d |ψ |2ψ

in which g1d=2h̄2a/ma2r . Here, a, as above, is the atomic scattering length, and
az (ar ) is the axial (radial) harmonic oscillator length29. In the absence of the
nonlinear interaction, the two-soliton state is modelled by ψ=ψ1+eiφψ2, where
ψi is:

ψi=

(
mωzN 2

π h̄

)1/4

exp
(
−

i
2
h̄ωz t−

i
2
mω2

zξ
2
i + im

dξi
dt

z
)

×exp
(
−
mωz

2h̄
(z−ξi)2

)
(1)

We have introduced the position coordinate ξ such that ξ=ξ1=−ξ2=z0 sin(ωz t),
which defines a pair of symmetric Gaussians in the harmonic trap. In the limit of
large impact speed (that is, z0�az ) the interaction Hamiltonian becomes:

Uint(ξ)=2g1d
∫
∞

−∞

|ψ1|
2
|ψ2|

2dz (2)

in which the coherent interaction terms are neglected owing to the fast
spatial-phase oscillations between the rapidly moving solitons. We treat the
interaction-induced shift as a small perturbation, and write the soliton motion as
ξ(t)=z0 sin(ωz t)+1ξ . The equation of motion for the perturbation 1ξ is30:

Nm
d2

dt 2
1ξ=−

1
2

d
dξ

Uint(ξ) (3)

in which Nm serves as the effective mass of the soliton and the factor 1/2 is due
to the identity ξ≡(ξ1−ξ2)/2. By substituting equations (1) and (2) in (3), we
find that the total spatial jump due to the density–density interaction is:

1ξ=−
g1dNa2z
2z2

0 h̄ωz

and the corresponding shift in the oscillation frequency is:

1ωz

ωz
=−

g1dNa2z
2πz3

0 h̄ωz
=−

0.67(N/Nc)a4z
πz3

0 ar

The approximate analytical approach presented here applies to a broad class of
pulses in generic models, matching the known results for integrable ones.

Uncertainties. The uncertainty in the strength of the nonlinearity is due to the
uncertainty in the atom number, N , the determination of the scattering length, a,
and the radial trap frequency, ωr . The uncertainty in N arises from 20%
shot-to-shot variation in N and a systematic uncertainty of 12% due to our ability
to discern atoms from the background. To measure ωr , the trap intensity was
modulated near the radial trap frequency and the resultant loss in atom number,
from heating, was measured. The uncertainty in ωr determined from a
Lorentzian fit to the data is <1%. The mapping of a versus B has been previously
determined, with our region of interest being near the zero crossing15. A linear fit
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to the data near the zero crossing gives a slope of 0.08(1)a0/G and a zero
crossing at B0=543.6(1)G, with the uncertainties derived from a systematic
uncertainty in the field calibration of 0.1G. This gives a systematic uncertainty in
a of 20% for |a|'0.5a0. Thus, the statistical and systematic uncertainties in the
strength of the nonlinearity are 20% and 23%, respectively, for |a|'0.5a0.
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