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Phase diagram of a strongly interacting spin-imbalanced Fermi gas
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We obtain the phase diagram of spin-imbalanced interacting Fermi gases from measurements of density profiles
of 6Li atoms in a harmonic trap. These results agree with, and extend, previous experimental measurements.
Measurements of the critical polarization at which the balanced superfluid core vanishes generally agree with
previous experimental results and with quantum Monte Carlo (QMC) calculations in the Bardeen-Cooper-
Schrieffer and unitary regimes. We disagree with the QMC results in the Bose-Einstein condensate regime,
however, where the measured critical polarizations are greater than theoretically predicted. We also measure the
equation of state in the crossover regime for a gas with equal numbers of the two fermion spin states.
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Strongly interacting Fermi gases are found in a variety
of settings, including superfluid 3He, quark matter, su-
perconducting materials, and ultracold atomic gases [1–3].
The properties of such systems, including the nature of
any superfluid or superconducting order, strongly depend
on the interactions between particles. At sufficiently low
temperatures the short-range interaction between opposite
spin atomic fermions may be characterized by the parameter
1/kF a, where kF is the Fermi momentum and a is the s-wave
scattering length. For 1/kF a � 1, opposite spins may form
tightly bound bosonic pairs which repel each other, thus
creating a Bose-Einstein condensate (BEC) of molecules. For
weaker attraction, where 1/kF a � −1, an ultracold atomic gas
may form a conventional Bardeen-Cooper-Schrieffer (BCS)
superfluid of loosely bound pairs. In between these extremes
is the unitarity regime, −1 < 1/kF a < 1, corresponding to
resonant two-body interactions. This BEC-BCS crossover has
been studied extensively over the past decade in the context of
ultracold atomic Fermi gases [4–6].

When the two spin states have equal populations, the
crossover between the BEC and BCS limits has no phase
transitions as a function of 1/kF a. Additional phases can
appear, however, when an effective magnetic field couples to
the spin- 1

2 fermions, favoring an imbalance (or polarization)
in the number of fermions in each spin state [7,8]. In thin-film
electronic superconductors, such a coupling can come from
a real in-plane magnetic field [9]. In the present setting
of cold atomic gases, this imbalance is accomplished by
creating unequal populations of the two hyperfine levels
comprising the pseudo-spin- 1

2 system. In the BCS regime, a
sufficiently large chemical potential difference, known as the
Chandrasekhar-Clogston limit [10,11], will suppress pairing.
A spin imbalance can be accommodated in the BEC regime,
however, resulting in a Bose-Fermi mixture that remains
a superfluid. The exotic Fulde-Ferrell–Larkin-Ovchinnikov
(FFLO) state, featuring pairs with nonzero momentum, has
been proposed as the ground state of a spin-imbalanced
superconductor under certain conditions [12,13]. There have
been no definitive observations of FFLO superconductivity,
but an experiment on spin-imbalanced fermions confined to
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one dimension has produced a phase diagram with a large
polarized region consistent with the FFLO state [14].

Neglecting any exotic superfluid phases (such as the FFLO
state), the phase diagram of the three-dimensional (3D) spin-
imbalanced Fermi gas as a function of interaction strength
and polarization, exhibits four phases [15]: (i) fully polarized,
noninteracting normal NFP, (ii) partially polarized normal NPP,
(iii) partially polarized superfluid SFP, and (iv) unpolarized
superfluid SF0 [16]. Additionally, constraining the system to
a fixed particle number leads to regions of phase-separated
mixtures of these phases. The local polarization, defined as
the effective magnetization divided by the density p = (n↑ −
n↓)/(n↑ + n↓), vanishes in the SF0 phase, p = 1 in the NFP

phase, and 0 < p < 1 in the NPP and SFP phases. The majority
and minority species are defined by n↑ � n↓.

Experimentally, atoms are generally trapped in potentials
resulting in inhomogeneous density distributions. In the local-
density approximation (LDA) the local state of the gas is
determined by its local chemical potential, so the density
profiles can reveal transitions between phases. Observations
of phase separation in spin-imbalanced Fermi gases were
obtained by direct in situ imaging of the density distributions
[17–19] and by imaging the distributions in time of flight
[20]. The distributions reported in Ref. [17] were out of
equilibrium due to an evaporative depolarization mechanism at
work in their highly elongated confining potential [21,22] and
therefore could not be compared with distributions calculated
assuming equilibrium. Density profiles obtained by Shin et al.
at unitarity and on the BEC side of resonance [23] agree
quantitatively with the theory of Bertaina and Giorgini (BG)
computed using the quantum Monte Carlo (QMC) method and
the LDA [24]. In the unitary regime, these profiles contain a
jump in the local polarization p that indicates a first-order
phase transition between the superfluid and the normal phases
[23,24]. Navon et al. measured thermodynamic properties of
the imbalanced gas by extracting the equation of state from
doubly integrated density profiles [25]. In this paper we report
measurements of the density profiles of Fermi gases for −1 �
1/kF a � 2 and use these measurements to better constrain the
low-temperature phase diagram. These measurements largely
confirm the results of previous investigations and extend the
range of interactions studied.

Our method for producing an imbalanced degenerate gas in
the lowest two hyperfine states of 6Li, F = 1/2,mF = 1/2
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FIG. 1. (Color online) (a)–(e) Axial cuts of the quadrant-averaged column density ncq↑,↓(z) and (f)–(j) their corresponding density profiles
n↑,↓(z). Values of B and P are indicated for each column and the corresponding values of 1/kF↑a are (a) and (f) 1.6; (b) and (g) 0.6; (c), (h),
(d), and (i) 0; and (e) and (j) −0.4. The uncertainty in 1/kF↑a is as large as 0.07 based on a combination of a 10% systematic uncertainty and
shot-to-shot variation in N↑, 3% uncertainty in the trap frequencies, and 2 G uncertainty in the bias magnetic field. Each plot is an average of
3–9 experimental realizations that have P within a range �P = 0.02 centered on the given value. Black, blue, and red curves correspond to
the majority spin |↑〉, minority spin |↓〉, and their difference, respectively. In (a)–(e) the blue and black vertical lines indicate the mean of the
minority and majority edges R↓ and R↑, respectively, and the purple vertical lines indicate the radius of maximum column density difference
Rs . In (f)–(j) the vertical green lines indicate the mean boundary of the SF0 core Rc. For each vertical line, the standard error of the mean is
indicated by the line’s thickness. We estimate a systematic uncertainty in the radii of 4 μm, dominated by the resolution limit of our imaging
system. In (d) and (i), P > Pc so that Rc = 0, and Rs is not meaningful.

(|↑〉) and F = 1/2,mF = −1/2 (|↓〉), has been discussed
previously in detail [14,17,19]. In brief, we sympathetically
cool 6Li with 7Li in an Ioffe-Pritchard magnetic trap and then
load the 6Li into a single-beam optical dipole trap formed by
a focused infrared laser beam. We control the spin imbalance
by varying the power of an adiabatic rf transfer from |↑〉 to |↓〉
at a field of 835 G. After the rf transfer, we evaporatively cool
the cloud in the single-beam trap by reducing its depth. We
evaporate at 835 G to study interactions on the BCS side of the
broad Feshbach resonance at 832 G [26,27], while for fields
on the BEC side of resonance we quickly ramp the field to 765
G before evaporation. After evaporation, atoms are loaded
into the final trap formed by two focused infrared laser beams
crossing at right angles while the single-beam trap is slowly
(100 ms) ramped off. The crossed beams each have 1/e2 radii
of 55 μm × 235 μm, resulting in an ellipsoidal crossed-beam
trap with a measured axial frequency of ωz/2π = 78 Hz
and measured radial frequencies of ωx/2π = 248 Hz and
ωy/2π = 274 Hz, at a trap depth of 1.5 μK. The number
of |↑〉 atoms N↑ is typically around 2 × 105 and varies by
about 10% shot to shot. The cloud polarization P = N↑−N↓

N↑+N↓
varies from shot to shot by about 30% for a given rf power, so
data must be postselected using the measured P . After loading
into the crossed-beam trap, we ramp the magnetic field to its

final value B at a rate from 0.4 to 2.0 G/ms; the final bias field
has an uncertainty of 2 G.

We use in situ phase-contrast polarization imaging,
described previously [14,28], to record the spatial
distribution of the trapped atoms. The probe beam propagates
perpendicular to the bias magnetic field, which is parallel
to the axial trap direction. The column densities nc↑,↓(x ′,z)
of each spin state are extracted from two images taken
within several microseconds of each other at different probe
detunings. Here the imaging plane (x ′,z) is rotated 30◦ from
the (x,z) plane defined by the trap potential. To improve
the signal-to-noise ratio, we fit nc to find the cloud center
(x ′ = 0,z = 0) and then average the four quadrants to obtain
the column density distributions of the majority ncq↑(x ′,z) =
[nc↑(x ′,z) + nc↑(−x ′,z) + nc↑(x ′, − z) + nc↑(−x ′, − z)]/4,
minority ncq↓(x ′,z), and their difference, which is related to
the spin density. The top row of Fig. 1 shows the average of
these column densities for several experimental realizations
with fixed parameters, for several values of B and P . The
majority and minority cloud radii R↑ and R↓, respectively,
are obtained from axial cuts of the column densities for each
experimental run and then averaged over several runs. We
also determine the radius Rs where the spin column density
ncq↑ − ncq↓ is maximum (the cusp). Within the LDA, a cusp
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FIG. 2. (Color online) (a)–(e) and (k)–(o) Radii extracted from density and column density profiles at several interaction strengths: the
majority R↑ ( ), minority R↓ ( ), cusp Rs ( ), and SF0 core Rc ( ) radii as functions of P , scaled by the axial Thomas-Fermi radius Rz of a
noninteracting Fermi gas with N↑ particles. (f)–(j) and (p)–(t) Local polarization at the cloud center p0 ( ) and at Rs , ps ( ). Each data point
is the average of several realizations of the experiment, binned with width �P = 0.02. Some of the phase boundaries Rs and Rc could not
be identified for small P due to a poor signal-to-noise ratio and for high P there is no identifiable Rs . In these instances, the data points are
omitted. The values for 1/kF↑a have uncertainty less than 0.07, resulting from 10% systematic uncertainty and shot-to-shot variation in N↑,
3% uncertainty in the trap frequencies, and 2 G uncertainty in the bias magnetic field. However, due to systematic variation of N↑ with P ,
1/kF↑a varies with P for a given B, particularly in the deep BCS and BEC regimes. In these cases, we list a range of values from 1/kF↑a at
P = 0 to the value at P = 1; otherwise, we list the mean value. For each interaction strength, Rc decreases as P increases, until vanishing at
Pc (green arrows), which we determined with a fit (see the text). We also fit p0 to determine Pc (orange arrows), as described in the text.

with a discontinuous derivative would indicate the location of
a first-order phase transition for a uniform gas. These mean
radii are indicated by the vertical lines in Fig. 1.

We reconstruct the density distributions n↑,↓(r) using
inverse Abel transforms of the averaged ncq↑,↓. The bottom
row in Fig. 1 shows axial cuts of these density distributions.
The SF0 core radius Rc is the radius at which the spin density
first rises above zero. The mean radii for several experimental
realizations are indicated by the vertical lines in the bottom row
of Fig. 1. Experimentally, we determine Rc by finding where
the spin density first rises above the background spin density
noise, which is the standard deviation of the spin density for
z > R↑. To reduce bias toward obtaining smaller values of
Rc due to noise, we smooth the profiles with a 7-pixel-wide
Hann window before computing Rc. We also confirm our
determination of Rc by fitting the spin density profiles near
Rc with a function that increases linearly from 0 for z > Rc;
the fit results are consistent to within shot-to-shot variation.

Temperatures are measured by fitting the ferromagnetic
wings of nc↑ for clouds with high P to noninteracting Thomas-
Fermi distributions. We find that for B � 743 G the fitted

temperature T � 0.08TF , where TF ≈ 1.5 μK is the Fermi
temperature of N↑ noninteracting atoms. For lower values of
B, however, we measure higher temperatures, which are likely
a result of heating from inelastic molecular decay collisions.
At B = 725 G, for example, we find T ≈ 0.11TF .

The boundary locations R↑, R↓, Rs , and Rc are plotted
as functions of P in Fig. 2 for several different interac-
tion strengths 1/kF↑a ranging from the BEC to the BCS
regimes. These boundary radii are normalized by Rz =
(48N↑)1/6az(ωxωy/ω

2
z )1/6, the axial Thomas-Fermi radius for

a noninteracting gas with N↑ atoms, where az = (�/mωz)1/2 is
the axial harmonic-oscillator length. The interaction strength
is determined from kF↑ = (48N↑)1/6/āHO and a = a(B)
[27], where āHO = (�3/m3ωzωxωy)1/6 is the mean harmonic-
oscillator length and B is the bias magnetic field. For a given B,
the systematic variation in N↑ with P produces up to a factor
of 1.2 variation in 1/kF↑a. Due to this variation, experiments
at a given field trace out the P -1/kF↑a phase diagram along
nonvertical lines. To account for day-to-day variation in trap
frequencies, we scale Rz for all the data at a given B so that
R↑/Rz goes to 1 as P goes to 1; this variation is less than 5%.
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The radii plotted in Fig. 2 provide detailed information
about the phases of trapped imbalanced Fermi gases as a
function of the imposed population imbalance. One common
feature is the existence of a balanced SF0 core with radius
Rc that decreases with increasing P until it vanishes at a
critical cloud polarization Pc. To extract Pc we fit Rc(P ) for
each field, shown by the green data points in Fig. 2, to an
empirical function which vanishes as (Pc − P )1/2 for P < Pc.
The results are indicated by vertical green arrows in Fig. 2.
At unitarity, we measure Pc = 0.79(4), where the error bar
accounts for the uncertainty in measuring P for a single cloud
as well as systematic uncertainty in the best-fit parameters.
This result is in good agreement with previous measurements
giving Pc = 0.77 [18], 0.76(3) [29], and 0.75 [25] and with
theoretical predictions of Pc = 0.77 [24,30], all slightly higher
than an initial measurement of Pc = 0.70(3) [20].

The work of BG, following earlier calculations of Pilati
and Giorgini [16], involved calculating the phase diagram
of trapped Fermi gases by combining the LDA with fits to
QMC calculations to characterize the ground-state energies of
the strongly interacting balanced SF0 phase and the partially
polarized normal phase NPP. The ground-state energy of the
SFP was taken to consist of contributions from a balanced
superfluid of pairs (given by the SF0 equation of state), a nonin-
teracting Fermi gas of the excess |↑〉 spins, and a leading-order
interaction between |↑〉 spins and pairs characterized by the
atom-pair scattering length abf = 1.18a. This characterization
of the SFP state was found by Pilati and Giorgini to agree
quite well with their QMC calculations. In addition, we
have repeated the BG calculations including additional terms
in the expression for the ground-state energy. The theory
of BG includes an interaction between Cooper pairs, with
density proportional to n↓, and excess |↑〉 spins, with density
proportional to n↑ − n↓, resulting in an interaction strength
proportional to n↓(n↑ − n↓). Work by Alzetto and Leyronas
found a higher-order correction with strength proportional
to n↓(n↑ − n↓)4/3 [31]. However, we find that including this
correction [contained in Eq. (53) of Ref. [31]] within the BG
formalism does not appreciably alter the value of Pc for any
interaction strength. Thus, we expect the BG result for Pc as
a function of interaction strength to be a robust theoretical
prediction that we can test with our measurements.

We also determine Pc by finding the value of P where
the local polarization at the center of the cloud p0 = p(z =
0) first rises above zero by fitting p0(P ) to a function that
increases with P for P > Pc. For 1/kF↑a > 0.5, where we
find a continuous SF0-SFP phase boundary, we assume that
p0(P ) increases with a sum of terms going like (P − Pc)3/2 and
(P − Pc)5/2. This form is motivated by the mean-field result
for the magnetization M vs chemical potential difference in
the SFP state of a 3D Fermi gas [8]

M = 2

3

m3/2

√
2π2�3

(
√

h2 − |�|2 − |μ|)3/2�(h − hc), (1)

with m the atom mass, h the chemical potential difference,
μ the chemical potential, and � the local pairing amplitude.
As can be seen by the presence of the Heaviside step function
�(h − hc), the magnetization is nonzero only for h > hc =√

|μ|2 + �2 and close to hc the onset of M is a sum of terms

Theory [24]
Ref. 25
Refs. 18, 20
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FIG. 3. (Color online) Critical polarization of a trapped gas, Pc,
as a function of the interaction parameter 1/kF↑a in the BEC-BCS
crossover. An unpolarized superfluid core exists for P < Pc. The
green points are the value of P at which the SF0 core radius vanishes
based on the fits described in Fig. 2. The orange points show the
value of P above which the polarization at the center of the cloud
is nonzero based on fitting to the appropriate function (see the text).
Vertical error bars include the uncertainty in determining P of 0.03,
measured by preparing a series of known balanced clouds and finding
the variation of P , as well as uncertainties in fitted parameters. From
unitarity to the BCS side, our results agree with previous experimental
results from Refs. [18,20] (open and closed red circles, respectively)
and from Ref. [25] (black line), as well as with the theory of BG (red
dashed line) [24]. For 1/kF↑a > 0.7 we find Pc to be higher than
predicted by BG.

going as (h − hc)3/2 and (h − hc)5/2. If we furthermore assume
that, at low P , the cloud polarization scales linearly with h,
then we have justified our assumed form for the behavior of
p0(P ), allowing us to extract Pc.

Away from the deep BEC regime, for 1/kF↑a < 0.5, where
we find a first-order phase transition SF0 → NPP [24], we fit
p0(P ) with a function that is linear in P − Pc, the expected
magnetization for a Pauli paramagnetic phase. The values of
Pc obtained from these fits are indicated by vertical orange
arrows in Fig. 2. While our two methods should ideally produce
the same Pc, they differ slightly because we only consider
non-negative radii, which leads to slight overestimates of Rc

near Pc when averaging several profiles. The magnitude of
this effect is smaller than the uncertainty in determining P .
Furthermore, due to noise in the density profiles, we cannot
distinguish an SF0 core from an SFP phase with p < 0.03.

The dependence of the critical polarization Pc on 1/kF↑a

determined by both methods is shown in Fig. 3. Here Pc

reaches a maximum near 1/kF↑a = 0.7 and decreases as the
interactions are tuned in either direction. Our measured values
of Pc agree with the values from Zwierlein and co-workers
[18,20] and Navon and co-workers [25,29] for 1/kF↑a � 0.75,
where our measurement ranges overlap. Our measurements
also agree with the zero-temperature theory of BG [24] in this
regime.

According to theory, Pc begins to drop for 1/kF↑a > 0.7,
as the BCS pairs transition to more tightly bound bosonic
molecules [16]. As 1/kF↑a increases, the superfluid becomes
more bosonic in character than fermionic, and since the
bosonic superfluid can accommodate free fermions, the SF0
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core begins to vanish. For 1/kF↑a < 0.7, the transition from
SF0 to NPP is predicted to be first order, while for 1/kF↑a > 0.7
the transition from SF0 to SFP is continuous [16]. In this
Bose-Fermi regime, we observe critical polarizations for loss
of the unpolarized core to be somewhat higher than predicted
by BG [24]. It is unlikely that this discrepancy is due to the
elevated temperatures we obtain in the BEC regime, since
Pc is expected to decrease with increasing T [32]. Thus, the
effect of finite T is to diminish the SF0 phase in favor of
the SFP phase, while we actually observe a more robust SF0

phase. Another possible explanation is that the discrepancy
arises from the experimental challenge of observing a small
central polarization that increases from zero continuously with
increasing P , rather than as a first-order jump, as in the BCS
regime.

As we have discussed, the critical polarization Pc indicates
where the balanced superfluid core of a trapped gas disappears.
The data also reveal information about the uniform density
phase diagram, assuming the LDA holds. To study these phase
boundaries, we measure the local polarization ps at the radius
of maximum column density difference ps = p(Rs) for each
cloud. According to the LDA, jumps in the atom density as
a function of chemical potential in a uniform imbalanced gas
lead to jumps in the density profile in the trapped gas. These
jumps occur at radii of maximum column density difference,
implying that ps can indicate the critical polarization for a
first-order phase transition in the uniform system [24].

In Fig. 2 the second and fourth rows show the dependence
of ps on the cloud polarization P . We can identify three
distinct regimes showing qualitatively different behavior. First,
in the deep BEC regime, for 1/kF↑a > 0.7, we observe that
ps increases to 1 as P goes to 1. This behavior indicates that,
in this regime, ps does not measure the position of a uniform
system phase boundary within the LDA, but is instead simply
a local maximum of p within an SFP phase. In this coupling
range, therefore, the critical polarization for the superfluid
transition of a uniform gas is pc = 1 [32].

Near the unitary region, for 1/kF↑a < 0.3, we see that ps

is approximately independent of P for a wide range of P [see,
e.g., Fig. 2(p)]. The presence of the plateau indicates that the
LDA holds and that the point of maximum column density
difference indeed represents a jump in p and a corresponding
phase transition in the uniform system at pc between SF0 and
NPP phases. We take pc to be the mean value of the plateau for
P < Pc.

Finally, in between these two regimes, for 0.3 < 1/kF↑a <

0.7, we find that ps increases monotonically with P , but that
ps = 1 is never reached. This is the regime, predicted by BG,
in which there is an SFP phase, but only for sufficiently small
P . Here we take pc to be the asymptotic value of ps evaluated
at Pc. The values of pc extracted in these regimes are plotted
in the phase diagram (Fig. 4) and show excellent agreement
with QMC calculations [16].

Possible evidence for finite temperature, and perhaps finite
imaging resolution, is the absence of clear jumps in the
minority density profiles shown in Fig. 1 for the unitarity and
BCS regimes where a first-order transition between SF0 and
NPP phases is expected. Systematic effects are also evident in
the phase diagrams of Fig. 2. In the unitarity and BCS regimes,
Rs should correspond to Rc, whereas in the BEC regime for

−1.0−0.500.51.01.52.0
0

0.2

0.4

0.6

0.8

1.0

Theory [16]
Ref. 23
Present Work

FIG. 4. (Color online) Critical local polarization of a homoge-
neous imbalanced gas, extracted by finding the polarization pc at
the cusp location (where a first-order phase transition occurs), as
a function of the interaction parameter 1/kF↑a in the BEC-BCS
crossover. Vertical error bars reflect the standard deviation of ps(P )
for P within �P = ±0.05 of Pc. Our results agree with theory, shown
as a green line [16], though we find somewhat higher pc than previous
experimental results, indicated by red points [23].

1/kF↑a � 1, Rs should correspond to R↓, since the transition
is between SFP and NFP phases [24]. While the predicted trends
are observable in the data, the agreement is not exact.

Finally, the equation of state (EOS) of a balanced (P = 0)
gas is given by ξ (1/kF↑a) = (ESF − N

2 Eb)/( 3
5NEF ), where

ESF is the ground-state energy of the superfluid, EF is the
Fermi energy, N is the total number of atoms, and Eb =
−�

2/ma2 is the binding energy for a molecular pair when
a > 0 [16,25]. For a harmonically trapped gas at unitarity, the

−1.0−0.500.51.01.52.0
0

0.2

0.4

0.6

0.8

1.0

EOS Theory [16]

Ref. 41
Ref. 25

FIG. 5. (Color online) The EOS ξ (1/kF↑a) = (ESF −
N

2 Eb)/( 3
5 NEF ) for an unpolarized gas. The data points show

(Rp/Rz)4, where Rp is the superfluid core radius and Rz is the axial
Thomas-Fermi radius of a noninteracting Fermi gas with N↑ atoms.
At unitarity and on the BCS side of resonance, we take Rp = R↓ at
P = 0, while on the BEC side, we determine Rp by extrapolating
Rs to P = 0. Since N↑ varies with P for a given field, the values
of 1/kF↑a for P = 0 differ slightly from those at P = Pc, as in
Figs. 3 and 4. At unitarity, we find ξ (0) = 0.39(3), in agreement
with a previous measurement from Ref. [41] (red point). Although
(Rp/Rz)4 only approximates the EOS away from unitarity, our
results agree with theoretical predictions of the EOS [16] (dashed
green line) and with experimental results from Ref. [25] (black line).
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EOS can be expressed as ξ (0) = (Rp/Rz)4, where Rp is the
radius of the superfluid core and Rz is the Thomas-Fermi radius
of a noninteracting gas with N↑ particles [33,34]. Although
(Rp/Rz)4 only approximates the EOS away from unitarity,
we nonetheless present our measurements of this quantity in
Fig. 5 and compare them with previous measurements and
theoretical calculations of the EOS. In the BEC regime, we
fit the column density profiles to a sum of Thomas-Fermi and
Gaussian distributions. Since we find that the Thomas-Fermi
radius corresponds to Rs for low P , we find Rp by linearly
extrapolating Rs to P = 0. At unitarity and in the BCS regime,
where the superfluid is unpolarized, we take Rp = R↓ for
data with P = 0. At unitarity, we find ξ (0) = 0.39(3), in
good agreement with theoretical calculations of the Bertsch
parameter [35–40] and recent measurements [25,41].

In conclusion, we have measured density profiles of spin-
imbalanced Fermi gases across the BEC-BCS crossover. From
these profiles, we determined the critical polarization for both
harmonically trapped and uniform gases above which the

balanced superfluid phase SF0 is suppressed. The agreement
with previous measurements and QMC theory is generally
good, although we find a more robust SF0 core in the BEC
regime than predicted by theory. Although this discrepancy
may be explained by very small polarizations that are difficult
to detect, the data show that we are able to resolve p0 as small
as 0.03. It may also be possible that small adjustments to the
theory could result in relatively large changes to Pc. Finally, we
have measured the equation of state in the crossover regime,
which is consistent with theory from the BCS to the BEC
regimes.
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