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Materials and Methods

A set of non-Helmholtz coils are used to add or subtract additional axial confinement in the
hybrid magnetic plus optical dipole trap used in the experiment. The radial trapping frequency
ωr is determined from atom loss by parametric excitation, and the axial trapping frequencyωz

is determined from collective dipole oscillations.

Determination of Scattering Length

Thes-wave scattering lengtha is controlled via a magnetic Feshbach resonance (S1). We extract
a (for a > 0) as a function of magnetic fieldB from the axial size of a Bose-Einstein condensate
(S2). The measured functional form ofa vs. B is well described by a Feshbach resonance
fit a(B) = aBG[1 + ∆/(B − B∞)], where the valuesaBG = −24.5+3.0

−0.2 a0, ∆ = 192.3(3) G, and
B∞ = 736.8(2) G were previously reported (S2). The standard deviation of the residuals from
the Feshbach resonance fit is 15% fora < 103 a0 and 30% fora > 103 a0 (Fig. S2).

To repeatably achieve very large values ofa it is necessary to have both high field stability
and accurate knowledge of the location ofB∞. We determine the shot-to-shot stability and cali-
bration of the magnetic field from radio frequency spectroscopy on the|1, 1〉 → |2, 2〉 transition.
We have improved the control of the current in the coils that provide the magnetic bias field in
our experiment such that a Lorentzian characterizing the shot-to-shot field stability has a full
width at half maximum of 115 kHz, corresponding to 42 mG at a bias field of 717 G (Fig. S3C).
With this improved field stability we have increased the precision in the determination of the
resonance location toB∞ = 736.97(7) G. The uncertainty inB∞ is dominated by systematic
uncertainty in the extracted values ofa from the measured axial sizes (S2). The fractional un-
certainty in the determination ofa is given byδa/a = δB/(B− B∞) ≈ 1.5×10−5 a/a0, whereδB
is dominated by the uncertainty inB∞.

Since we have only measureda for a > 0, we have no direct knowledge ofa < 0. However,
a coupled-channels calculation (S3) agrees with the Feshbach resonance fit to within 10% over
the range of 10< a/a0 < 4 × 104 (Fig. S3) which gives us confidence that the Feshbach
resonance fit is equally reliable on thea < 0 side of the resonance.
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Determination of the Loss Coefficients

Extraction ofL3 andL4 from the measured atom number loss curvesN(t) requires the evaluation
of the spatially-averaged moments of the density distribution 〈n2〉 and〈n3〉. By comparing the
measured distributions with a Thomas-Fermi inverted parabola in the case of a pure Bose-
Einstein condensate, we find to a good approximation that thedistributions remain in thermal
equilibrium throughout the decay process. For a condensate, the axial Thomas-Fermi radius is
R = (15~2ω2

r Na/m2ω4
z )

1/5, the peak density isn0 = (15Nω2
r )/(8πR

3ω2
z ), and〈n2〉 = γ2/5N4/5,

whereγ = (25m6ω4
rω

2
z )/(6272

√
42π5

~
6a3). The observed decay fits well to a purely three-body

loss process for a condensate, so we neglectL4 in this case. Since we are not explicitly fitting
for L4, four-body effects if present may lead to an increase in the extracted loss rateL3 (S4).
The decay is then described by

1
N

dN
dt
= −g(3)

3!
L3γ

2/5N4/5, (S1)

which has the solution

N(t) =
N0

(

1+
4
5

g(3)L3

3!
γ2/5N4/5

0 t

)5/4
. (S2)

A thermal gas is well described by a cylindrically-symmetric Gaussian where〈n2〉 = n2
p/
√

27,
〈n3〉 = n3

p/8, and the peak density isnp = N(ωz/ωr)[mω2
r/2πkBT ]3/2. Heating due to recom-

bination is expected to become important whenǫ . U (S5). However, there is no appreciable
change observed in the Gaussian width during the decay even though the loss mechanism pref-
erentially targets atoms at higher densities. This may be due to a lack of rethermalization during
the decay (S6). We find that bothL3 andL4 contribute to the loss for the thermal gas. Since we
have not found a closed-form solution to Eq. 1, we instead usethe following implicit solution
to extractL3 andL4:
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, (S3)

where we have assumedg(3)
= 3! andg(4)

= 4! for a non-condensed gas.
In Fig. 1 the vertical error bars correspond to the range inL3 for which theχ2 of the fit to

Eq. S3 increases by one, while simultaneously adjustingL4 andN0 to minimizeχ2. Systematic
uncertainties inωr, ωz, N, andT , which are not included in these error bars, contribute as much
as a factor of 2 in the uncertainty ofL3. The representative horizontal error bars are due to shot-
to-shot variation in the magnetic field and the determination of a from the Feshbach resonance
fit. Background loss limits the sensitivity of the measurement to L3 > 2(1)× 10−28 cm6/s. The
error bars in Fig. 2 are similarly determined.
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Comparing with Theory

The universal theory (S7) describing Efimov physics predicts that the three-body loss rate coeffi-
cient is described byL3(a) = 3C(a)~a4/m whereC(a) is a logarithmically periodic modulation.
The following expression describes this modulation:

C(a) =































4590 sinh(2η−)

sin2 (s0 ln(a/a−)) + sinh2 η−
(a < 0),

67.12e−2η+
[

sin2 (s0 ln(a/a+)) + sinh2 η+
]

+ 16.84(1− e−4η+) (a > 0),

(S4)

where the first and second terms fora > 0 account for coupling to weakly- and deeply-bound
dimer states, respectively (S7,S8). The valuea− denotes the resonance location when the energy
of the Efimov trimer is degenerate with the free atom continuum, and the valuea+ is the location
of a recombination minimum (S9). This expression is log-periodic withC(eπ/s0a) = C(a), where
the universal parameters0 = 1.00624 is known from theory (S7, S10).

The four-body loss coefficientL4 is predicted to have a similar form to that ofL3:

L4(a, a
T ) = 4C4

~|a|7

m
sinh(2η−)

sin2 (s0 ln(a/aT )) + sinh2 η−
(a < 0), (S5)

whereC4 is a theoretically undetermined universal constant (S11). Eq. S5 is phenomenologi-
cally derived from the theory of Ref. S11 (S12). We find thatC4 = 16(8)× 104 in the region
1000< −a/a0 < 2500, assuming thatη− = 0.13, as for the three-body resonance. In Fig. 2 we
plot 1

2{L4(a, 0.90a−1) + L4(a, 0.43a−1)} where we have replacedaT with the predicted locations
of the two tetramer states linked to the first trimer state (S4, S11).
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Fig. S1. Loss dynamics at two values ofa < 0 for a thermal gas. The dots are data. The dotted
red line is a fit of the data to the solution of Eq. 1 with only three-body loss accounted for, the
dashed blue line is the fit when only four-body loss is included, and the solid green line is a
fit accounting for both effects (Eq. S3). (A) a = −1800a0, where three-body losses dominate;
(B) a = −3300a0, nearaT

2,1 where four-body losses dominate.
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Fig. S2. (A) a extracted from the axial size of Bose-Einstein condensatesas a function of
magnetic field. Results of a coupled-channels calculation are shown by the solid red line. The
dashed black line is the Feshbach resonance fit. (�) Data previously reported with trapping
frequenciesωr = (2π) 193 Hz andωz = (2π) 3 Hz (S2). Data withωr = (2π) 236 Hz and
ωz = (2π) 4.6 Hz (•) orωz = (2π) 16 Hz (�). Beyond mean field effects become important when
n0a3

& 0.1 (S13). We apply a mean field correction for data with 0.1 < n0a3 < 1, and omit data
with n0a3 > 1 in the Feshbach resonance fit (S2). (B) Full range of data spanning 7 decades
in a. (C) Fractional residuals of the extracted values ofa from the Feshbach resonance fit.
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Fig. S3. (A) a vs. magnetic field from a coupled-channels calculation. (B) Fractional difference
between the coupled-channels calculation and the Feshbachresonance fit used to determinea
(solid red linea > 0, dashed blue linea < 0). (C) Radio frequency spectroscopy signal at 717 G
showing a full width at half maximum of 115 kHz.
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Fig. S4. The effective rangeRe (solid red) and scattering lengtha (dashed blue) vs. magnetic
field, extracted from a coupled-channels calculation through a low energy expansionk cotδ =
−1/a+Rek2/2, whereδ is the scattering phase shift (S1). The dotted vertical line is the location
of B∞.
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