
Collective Collapse of a Bose-EinsteinCondensate with Attractive InteractionsC. A. Sackett, J. M. Gerton, M. Welling, and R. G. Hulet1Physics Department, MS 61Rice UniversityHouston, TX 77251Abstract. Bose-Einstein condensation (BEC) of atoms with attractive interactionsis profoundly di�erent from BEC of atoms with repulsive interactions, in several re-spects. We describe experiments with Bose condensates of 7Li atoms, which are weaklyattracting at ultralow temperature. We measure the distribution of condensate occu-pation numbers occurring in the gas, which shows that the number is limited anddemonstrates the dynamics of condensate growth and collapse.INTRODUCTIONThe recent attainment of Bose-Einstein condensation (BEC) of dilute atomicgases [1{3] has enabled new investigations of weakly interacting many-body sys-tems. 7Li is unique among these gases in that the interactions are e�ectively at-tractive. These attractive interactions profoundly e�ect the nature of BEC. Infact, it was long believed that attractive interactions precluded the attainment ofBEC in the gas phase [4,5]. It is now known that BEC can exist in a con�nedgas, provided the condensate number remains small [6]. These condensates arepredicted to exhibit fascinating dynamical behavior, including soliton formation [7]and macroscopic quantum tunneling [8{11]. This paper reviews our work on BECof 7Li, including the measurement of limited condensate number, and the dynamicsof condensate growth and collapse.INTERACTIONS IN DILUTE GASESOne of the primary interests in dilute Bose-Einstein condensates is that the in-teractions are weak, facilitating comparison between theory and experiment. When1) This work is supported by the National Science Foundation, the O�ce of Naval Research,NASA, and the Welch Foundation.



the de Broglie wavelength � is much longer than the characteristic two-body inter-action length, the e�ect of the interaction can be represented by a single parameter,the s-wave scattering length a [12]. The magnitude of a indicates the strength ofthe interaction, while the sign determines whether the interactions are e�ectivelyattractive (a < 0) or repulsive (a > 0). In the experiments, the density n is smallenough that njaj3 � 1, so only binary interactions need be considered.Photoassociative SpectroscopyAlthough the interaction potentials for hydrogen and the alkali-metal atomsthrough francium are all qualitatively the same, in that they all have a repul-sive inner-wall, a minimum that supports vibrational bound states (except for thetriplet potential of hydrogen), and a long-range van der Waals tail, their respec-tive scattering lengths di�er enormously in magnitude and in sign. This variationarises because of di�erences in the proximity of the least-bound vibrational stateto the dissociation limit. As with the familiar attractive square-well potential, abarely bound or barely unbound state leads to collisional resonances that producevery large magnitude scattering lengths. Therefore, small changes in the interac-tion potential may result in a large change in the magnitude, or even change thesign of a. In the past few years, photoassociative spectroscopy of ultracold atomshas proven to be the most precise method for determining scattering lengths [13].In one-photon photoassociation, a laser beam is passed through a gas of ultracoldatoms con�ned to a trap. As the laser frequency is tuned to a free-bound resonance,diatomic molecules are formed resulting in a detectable decrease in the number oftrapped atoms. The intensity of the trap-loss signal is sensitive to the ground-statewavefunction, providing useful information for determining the ground-state inter-action potential. The value of the scattering length is found by numerically solvingthe Schr�odinger equation using this potential. This method has been used to �ndthe scattering lengths for Li, Na, K, and Rb [13].A more precise method for �nding scattering lengths is to probe the ground statemolecular levels directly. In particular, the scattering length is extremely sensitiveto the binding energy of the least-bound molecular state. We have used two-photonphotoassociation to directly measure this binding energy for both stable isotopesof lithium, the bosonic isotope 7Li [14] and the fermionic isotope 6Li [15]. In thismethod, a laser is tuned to the free-bound transition as in one-photon photoassocia-tion, while the frequency of a second laser is tuned to resonance between the boundexcited state and a bound ground state. The frequency di�erence between the twolasers gives the binding energy directly. This technique has resulted in the mostprecisely known atomic potentials. Table 1 gives the triplet and singlet scatteringlengths for both isotopes individually, as well as for mixed isotope interactions. Asummary of our scattering length measurements in lithium is given in Ref. [15].Two-photon spectroscopy of the ground-state has also been used recently to �ndthe scattering lengths of rubidium [16].



TABLE 1. Singlet and triplet scattering lengths in units of ao, forisotopically pure and mixed gases of lithium isotopes [15]. The singletscattering lengths were determined from one-photon photoassocia-tive spectra, while the triplets were determined using the two-photontechnique. The mixed case scattering lengths were calculated fromknowledge of the 6Li2 and 7Li2 potentials6Li 7Li 6Li/7LiaT �2160� 250 �27:6� 0:5 40:9� 0:2aS 45:5� 2:5 33� 2 �20� 10Mean-Field TheoryThe e�ects of interactions on the condensate have been studied using mean-�eldtheory and neglecting inelastic collisions [17]. In this approximation, the interactionpart of the Hamiltonian is replaced by its mean value, resulting in an interactionenergy of U = 4��h2an=m, where n is the density and m is the atomic mass [12].For a gas at zero temperature, the net result of the interactions and the con�ningpotential can be found by solving the non-linear Schr�odinger equation for the wavefunction of the condensate,  (r) [18]: � �h22mr2 + V (r) + U(r) � �! = 0: (1)Here � is the chemical potential, and V (r) is the con�ning potential provided bythe trap. In a spherically symmetric harmonic trap with oscillation frequency !,V (r) = m!2r2=2. The interaction energy U(r) is determined by taking n(r) =j (r)j2. Implications of a < 0Limited Condensate NumberFor a dilute gas with a > 0, corresponding to repulsive interactions, it wasshown long ago that the condensate will be stable and that its properties, such asits critical temperature Tc or its elementary excitation spectra, can be found froma perturbation expansion in the small parameter na3 [12]. However, for a < 0 thesituation is drastically di�erent. Since U decreases with increasing n, an untrapped(homogeneous) gas is mechanically unstable to collapse. Therefore, it was believedthat BEC was not possible in the gas phase. In a system with �nite volume,however, the zero-point kinetic energy of the atoms provides a stabilizing inuence.A numerical solution to Eq. (1) is found to exist only when N0 is smaller than alimiting value Nm [19]. Physically, this limit can be understood as requiring thatthe interaction energy U be small compared to the trap level spacing �h!, so that the



interactions act as a small perturbation to the ideal-gas solution. This conditionimplies that Nm is of the order l0=jaj, where l0 = (�h=m!)1=2 is the length scale ofthe single-particle trap ground state [20]. It is at �rst surprising that Nm increasesproportional to l0, since it is known that BEC cannot occur in a homogeneousgas. However, the density of the condensate, N0=l30, tends to zero as l0 ! 1.This tradeo� between Nm and n is an important consideration when designing anexperiment.For condensate occupation numbers below Nm,  is determined using Eq. (1).It is found that for N0 � Nm,  is closely approximated by the single-particleground state, and as N0 increases, the interaction energy causes the spatial extentof  to decrease. Note that even when a solution to Eq. (1) exists it representsonly a metastable state of the trapped atoms [8{10,21], since the equilibrium stateof lithium at low temperatures is a crystalline metal solid. Also, for temperaturesT > 0, Eq. (1) must be modi�ed to take into account the presence of thermallyexcited atoms, and Nm is slightly lower [21,22].A variational method has been used to study the decay of condensates withattractive interactions [23,9,10], which we discuss here following the development ofStoof [10]. The ground-state solution to Eq. (1),  0, satis�es an extremal conditionh 0jHj 0i � h jHj i (2)for any other function  . The energy operator H is given byH = � �h22mr2 + V (r) + U(r)2 ; (3)where the factor of 1/2 in the interaction term arises from the dependence of U on . Because the solution to Eq. (1) for the ideal gas is a Gaussian function, it isreasonable to minimize hHi using the set of Gaussian trial wavefunctions (r; l) = � N0�3=2l3�1=2 exp � r22l2! : (4)Evaluating hHi � H(l) yieldsH(l) = N0�h2m  34l2 + 3l24l40 � jajp2� N0l3 ! : (5)This function is plotted for three values of N0, in Fig. 1. It is observed thatfor su�ciently small N0, a local minimum exists near l = l0, indicating that ametastable condensate is possible. For larger N0, however, the minimum vanishes,and the system will be unstable. The condition for stability is N0 � 0:68 l0=jaj,which is in reasonable agreement with the exact value obtained by numerical inte-gration of Eq. (1), Nm = 0:58 l0=jaj [19]. At very small l, the density is su�cientlyhigh that Eq. (1) is no longer valid, so the divergence of H as l! 0 is of no concern,since it means only that the true ground state of the system is not a dilute gas.
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l/l0FIGURE 1. The condensate energy H, plotted in units of N0�h2=ml20. The upper curve cor-responds to N0 = 0:48 l0=jaj, the middle curve to N0 = 0:68 l0=jaj, and the lower curve toN0 = 0:87 l0=jaj. It is evident that a local minimum in H exists near l = l0 if N0 is su�cientlylow, indicating that a metastable condensate can exist.We have extended the variational calculation to the case of a cylindrically sym-metric trap [20]. We �nd that Nm is determined by the direction of tightest con-�nement, so that the stability condition can be expressed asNm � lminjaj ; (6)where lmin is the lesser of l0� and l0z. This result is in agreement with those ofUeda et al. [11]. Therefore, we �nd that a spherically symmetric trap is optimalfor most purposes, as it provides the highest density for a given Nm.Condensate CollapseAlthough a condensate can exist in a trapped gas, it is predicted to be metastableand to decay by quantum or thermal uctuations [8{11]. The condensate has onlyone unstable collective mode, which in the case of an isotropic trap corresponds tothe breathing mode [7,23]. The condensate therefore collapses as a whole, either bythermal excitation over, or by macroscopic quantum mechanical tunneling throughthe energy barrier in con�guration space, shown in Fig. 1.The rates of decay for both quantum tunneling and thermal excitation can becalculated within the formalism of the variational calculation [10] and are shown inFig. 2. For large numbers of condensate atoms, these collective decay mechanismsare much faster than the decay caused by inelastic two and three-body collisions,since the energy barrier out of the metastable minimum vanishes as N0 approachesNm.
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0FIGURE 2. Decay rate of the condensate as a function of the number of condensate particlesat several temperatures. The dotted line shows the macroscopic quantum tunneling rate.Condensate Growth and Collapse During EvaporationExperimentally, the condensate is formed by evaporatively cooling the gas. Asthe gas is cooled below the critical temperature for BEC, N0 grows until Nm isreached. The condensate then collapses spontaneously if N0 � Nm, or the col-lapse can be initiated by thermal uctuations or quantum tunneling for N0 ' Nm[8{11,24]. During the collapse, the condensate shrinks on the time scale of the traposcillation period. As the density rises, the rates for inelastic collisions such asdipolar decay and three-body molecular recombination increase. These processesrelease su�cient energy to immediately eject the colliding atoms from the trap,thus reducing N0. The ejected atoms are very unlikely to further interact with thegas before leaving the trap, since the density of noncondensed atoms is low. As thecollapse proceeds, the collision rate grows quickly enough that the density remainssmall compared to a�3 and the condensate remains a dilute gas [24,25]. However,the theories are not yet conclusive as to what fraction of the condensate atomsparticipates in the collapse, and of those participating, what fraction is eventuallyejected.Both the collapse and the initial cooling process displace the gas from thermalequilibrium. As long as N0 is smaller than its equilibrium value, as determinedby the total number and average energy of the trapped atoms, the condensate willcontinue to �ll until another collapse occurs. This results in a cycle of condensategrowth and collapse, which repeats until the gas comes to equilibrium with someN0 < Nm. We have modeled the kinetics of the equilibration process by numericalsolution of the quantum Boltzmann equation, as described in Ref. [24]. Fig. 3shows a typical trajectory of N0 in time, for our experimental conditions. In this
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FIGURE 3. Numerical solution of the quantum Boltzmann equation, showing evolution ofcondensate occupation number. A trapped, degenerate 7Li gas is cooled at t = 0 to a temperatureof about 100 nK and a total number of 4� 104 atoms. The gas then freely evolves in time. Theinset shows an expanded view of the early time behavior on the same vertical scale.calculation we assumed that N0 is reduced to zero when a collapse occurs, on thebasis of the model proposed in Ref. [24].Relation to Other Collapse PhenomenaThe non-linear Schr�odinger equation (Eq. (1)) has been used to describe manywave-collapse phenomena occurring in classical wave physics. Some of these phe-nomena are the collapse of Langmuir waves in plasmas [26], and self-focusing oflight waves propagating in a medium with a cubic non-linearity [27]. Because ofthis far-ranging applicability there is an extensive literature devoted to the solutionof the non-linear Schr�odinger equation under various conditions. Kagan et al. havebegun to apply some of this accumulated experience to the di�cult problem ofdescribing the collapse of a condensate, including both growth and non-linear loss[25]. EXPERIMENTMagnetic TrapThe apparatus used to produce BEC of 7Li is described most completely inRef. [20]. A Zeeman slower is used to slow an atomic beam of lithium atoms,
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JFIGURE 5. A schematic of the imaging system used for in situ phase-contrast polarizationimaging. A linearly polarized laser beam is directed through the cloud of trapped atoms locatedat A. The probe beam and scattered light �eld pass out of a vacuum viewport B, and are relayedto the primary image plane G by an identical pair of 3-cm-diameter, 16-cm-focal-length doubletlenses C and F. The light is then re-imaged and magni�ed onto a camera J by a microscopeobjective H. The measured magni�cation is 19, and the camera pixels are 19 �m square. A linearpolarizer E is used to cause the scattered light and probe �elds to interfere, producing an imagesensitive to the refractive index of the cloud.is calculated ahead of time [30], and depends on the elastic collision rate and thetrap loss rate. The elastic collision rate n�v is roughly 1 s�1, with cross-section� = 8�a2 � 5 � 10�13 cm2. The collision rate is approximately constant duringevaporative cooling. We have recently measured the loss rate due to collisions withhot background gas atoms to be < 10�4 s�1, and the inelastic dipolar-relaxationcollision rate constant to be 1:05 � 10�14 cm3 s�1 [31]. From the low backgroundcollision loss rate, we estimate the background gas pressure in the apparatus tobe < 10�12 torr. Quantum degeneracy is typically reached after 200 seconds, withN � 106 atoms at T � 700 nK. Lower temperatures are reached by extending thecooling time or by the application of a short, deep cooling pulse.Phase-Contrast ImagingAfter evaporative cooling, the spatial distribution of the atoms is imaged in situusing an optical probe. Since the single-particle harmonic oscillator ground stateof our trap has a Gaussian density distribution with a 1/e-radius of only 3 �m,a high-resolution imaging system is required. Because the optical density of theatoms is su�ciently high to cause image distortions when probed by near-resonantabsorption [32], we instead use a phase-contrast technique with a relatively largedetuning from resonance � = �250 MHz. Our implementation of phase-contrastimaging, shown schematically in Fig. 5, is both simple and powerful. It exploits thefact that atoms in a magnetic �eld are birefringent, so that the light scattered bythe atoms is polarized di�erently from the incident probe light. A linear polarizerdecomposes the scattered and probe light onto a common axis, which causes themto interfere. Since the phase of the scattered light is equal to �=4�, where � is the



FIGURE 6. Phase-contrast images averaged around the cylindrical axis of the trap. For bothcases, N � 23,000 atoms and T � 190 nK. For the image on the right, N0 � 1050, while forthe image on the left N0 � 65. These images demonstrates our sensitivity to a small number ofcondensate atoms on a background of a large number of non-condensed atoms.on-resonance optical density, the spatial image recorded on the CCD camera is arepresentation of the integrated atomic column density. Phase-contrast polarizationimaging is described more fully in Ref. [20].Fig. 6 shows two images obtained using phase-contrast polarization imaging.For these images, the trap symmetry is exploited by averaging the data around thecylindrical trap axis to improve the signal to noise. The total number of atoms isapproximately the same for both images, but on the right T is slightly below Tcand a narrow condensate peak is clearly visible, while for the image on the left,T � Tc. Data AnalysisImage pro�les are obtained from the averaged data. These pro�les are �t with amodel energy distribution to determineN , T , and N0. If the gas is in thermal equi-librium, then any two of N , T , or N0 completely determine the density of the gasthrough the Bose-Einstein distribution function. However, if the gas is undergoingthe growth/collapse cycles shown in Fig. 3, it certainly is not in thermal equilib-rium and a more complicated function is required. Using the quantum Boltzmannequation model, we �nd that atoms in low-lying levels quickly equilibrate amongthemselves and the condensate, and that high-energy atoms are well thermalizedamong each other. Therefore, a three parameter function, including two chemicalpotentials corresponding to the two parts of the distribution, and a temperaturegiven by the high-energy tail of the distribution, is su�cient to describe the ex-pected non-equilibrium distributions and to determine N0 [33]. The �ts yield anaverage reduced �2 of very nearly 1, indicating that the model is consistent with



the data within the noise level. The procedure was tested by applying it to sim-ulated data generated by the quantum Boltzmann model, and also by comparingthe analysis of experimental images of thermalized clouds using both equilibriumand nonequilibrium models. From these tests, the systematic error introduced bythe nonequilibrium model is estimated to be not more than �50 atoms. The mostsigni�cant uncertainty in N0 is the systematic uncertainty introduced by imaginglimitations. While the imaging system is nearly di�raction limited, the resolutionis not negligible compared to the size of the condensate, and imaging e�ects mustbe included in the �t [32]. Imaging resolution is accounted for by measuring thepoint transfer function of the lens system and convolving this function with theimages. Uncertainties in the resolution lead to a systematic uncertainty in N0 of�20% [33]. EXPERIMENTAL RESULTSIn this section, we give our experimental results on the observation of limitedcondensate number [6], and on the collapse of the condensate [33].Limited Condensate NumberWe have measuredN0 for several thousand di�erent degenerate distributions withT ranging between 80 and 400 nK, and for N between 2,000 and 250,000 atoms.In all cases, N0 is found to be relatively small. The maximum N0 observed isbetween 900 and 1400 atoms, depending on the assumed imaging resolution. Thismeasurement is in very good agreement with the mean-�eld prediction of 1250atoms.In the analysis we have assumed that the gas is ideal, but interactions are ex-pected to alter the size and shape of the density distribution. Mean-�eld theorypredicts that interactions will reduce the 1/e-radius of the condensate from 3 �m forlow occupation number to �2 �m as the maximumN0 is approached [34,7,10,21,22].If the smaller condensate radius is used in the �t, the maximum N0 decreases by�100 atoms. Condensate CollapseTo explore the predicted collapse of the condensate, evaporative cooling is con-tinued well into the degenerate regime, to N � 4 � 105 atoms at a microwavefrequency 100 kHz above the trap bottom. The frequency is then rapidly reducedto �10 kHz and raised again, leaving approximately 4� 104 atoms. The frequencyis swept quickly compared to the collision rate of �3 Hz, so that this \microwaverazor" simply eliminates all atoms above a cuto� energy. It thereby creates a de�-nite energy distribution at a speci�ed time whose relaxation to equilibrium can be



followed. Fig. 3 shows the expected trajectory of N0 in time, for our experimen-tal conditions. For this calculation, we have assumed that N0 is reduced to zerofollowing a collapse [24].Although phase-contrast imaging can in principle be nearly nonperturbative, itis not possible to reduce incoherent scattering to a negligible level and simultane-ously obtain low enough shot noise to measure N0 accurately. Each atom thereforescatters several photons during a probe pulse, heating the gas and precluding thepossibility of directly observing the evolution of N0 in time as in Fig. 3. Thislimitation cannot be overcome by repeating the experiment and varying the delaytime � between the microwave razor and the probe, because the evolution of N0 ismade unrepeatable by random thermal and quantum uctuations in the condensategrowth and collapse processes, as well as experimental uctuations in the initialconditions. Because of this, however, the values of N0 occurring at a particular �are expected to vary as di�erent points in the collapse/�ll cycle are sampled. Wehave observed such variations by measuring N0 for many similarly prepared sam-ples at several values of � . Their measured distribution are shown as histogramsin Fig. 7. For small � , N0 ranges from near zero to about 1200 atoms, as expectedif the condensate is alternately �lling to near the theoretical maximum and subse-quently collapsing. At longer time delays, the histograms change shape, narrowingsomewhat at � = 30 s, and having only small N0 values at � = 60 s. The variationsin N0 are uncorrelated with changes in N , T , probe parameters, imaging modelparameters, and goodness of �t. To our knowledge, no other explanation for varia-tions of this magnitude has been proposed, so we consider the observation of thesevariations to strongly support the collapse/�ll model.The histogram data can be compared with the predictions of the quantum Boltz-mann model. In the model trajectory shown in Fig. 3, three time domains can bediscerned with which the data can be correlated. For � � 20 s, the condensate col-lapses frequently as the gas is equilibrating. Model histograms for delays of 5 and10 seconds are similar to each other, and agree qualitatively with the experimen-tally observed distributions in being broadly spread between 0 and Nm. Around� = 20-40 s, equilibrium is reached and N0 is stabilized for several seconds at amaximum value. As is observed in the data, N0 declines at later times as atomsare lost through inelastic collisions.The detailed shape of the model histogram for � � 20 s can be deduced from thedependence ofN0 on time as the condensate �lls, since the probability of observing aparticular N0 value is proportional to (dN0=dt)�1 at that N0 value. After a collapse,the condensate initially �lls slowly because the stimulated Bose scattering factoris small. Subsequently, the growth rate increases until N0 reaches �100 atoms,when the growth becomes linear. This saturation occurs when the populations oflow-lying energy levels in the trap become depleted. Condensate growth is thenlimited by the rate for collisions between high energy atoms which produce morelow energy atoms, which yields a constant �ll rate. Because of these e�ects, ahistogram based on our model is signi�cantly peaked at small N0, and lower butat between N0 = 100 and Nm.
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