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Abstract
The nature of Bose–Einstein condensation (BEC) in atomic vapours
depends critically on the mean-field interaction of the atoms. When this
interaction is attractive, the number of atoms in the condensate is limited.
The interplay of this limit and the natural growth of the condensate during
BEC leads to complicated dynamical behaviour. We develop a model for
this behaviour based on the nonlinear Schrödinger equation and the quantum
Boltzmann equation. The condensate occupation number is predicted to
oscillate rapidly as the condensate alternately fills and collapses, and the
oscillations are seen to persist for many cycles before the gas comes to
equilibrium. Experimental evidence for these oscillations in the case of 7Li
is presented, along with details of the experimental apparatus and methods.
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1. Introduction

The development of techniques to produce Bose–Einstein
condensation (BEC) in dilute atomic vapours has led to a
surge of interest in condensate physics. This paper is intended
to provide an introduction to the field. In particular, many
of the properties of condensates arise from the effects of
interatomic interactions. Atomic species with effectively
attractive interactions are an especially good example of
this, because in these gases condensates cannot exist if the
interactions are too strong. This paper attempts to explain, in
a self-contained way, why this is so and how the behaviour
of condensates, when they do exist, is affected. Reference
is generally made to the case of 7Li, and to the experiments
exploring its properties which we have carried out. The
arguments and conclusions, however, are applicable to any
species with attractive interactions.

The paper is divided into four sections. This first one
provides a qualitative overview of BEC and the role atomic
interactions play in the properties of a condensate. It is very
much intended for the non-specialist, and we hope it will be
of some value even to the non-physicist. The second section
presents a brief but mostly self-contained development of the
theoretical framework required to handle interacting atomic
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gases. The third section describes a numerical model we
developed to simulate the gas, and explains the predicted
behaviour. The fourth section discusses our experimental
implementation and results.

1.1. What is BEC?

Bose–Einstein condensation is a phase transition that occurs
when a collection of identical bosons is cooled to the point that
their quantum mechanical de Broglie waves overlap. What
exactly this means will be discussed at some length in the
following, but the most important point is that BEC occurs
only at quite low temperatures. The de Broglie wavelength
� is equal to h̄/p, where h̄ is Planck’s constant and p is the
momentum of the particle. At temperature T , typical values of
p will be (2mkBT )

1/2, wherem is the mass of the particle and
kB is Boltzmann’s constant. The precise condition for BEC to
occur is that

n�3 = n
(

2πh̄2

mkBT

)3/2

= 2.612, (1)

where n is the number density of the particles. The lower
the density, the colder the required temperature is. BEC-
like behaviour can occur in solid, liquid or gas phases, with
observed transition temperatures ranging from a few degrees
Kelvin for the densest systems to well below one millionth of
a degree for the most dilute gases.
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BEC was predicted by Einstein in 1925 [1], in an
extension to Bose’s derivation of the Planck black-body
radiation spectrum [2]. The theory of BEC was first applied to
superfluid liquid helium in the 1930s and 40s [3,4], and shortly
thereafter was used to explain superconductivity in metals at
low temperatures [5]. These two branches of condensed matter
physics have been enormously important research areas since
their inception. More recently, BEC and related phenomena
have been studied in several gaslike systems, such as excitons
in a semiconductor crystal [6,7], liquid helium wetting a porous
glass [8, 9] and spin-polarized atomic hydrogen on a liquid
helium surface [10]. However, the experimental system closest
to Einstein’s original vision is probably the type described here,
using a spin-polarized dilute atomic gas confined in a magnetic
trap.

These experiments have been performed on a range
of gases, namely 87Rb, 7Li, 23Na, 1H and 85Rb [11–15,
respectively]. Other species in which BEC is currently being
pursued include the remaining alkali elements and metastable
4He. A variety of phenomena have been investigated, such
as excitation spectra [16, 17], coherence properties [18, 19],
interference [20, 21] and multiple-spin-component gases [22,
23]. However, the field is still rapidly expanding, with
many new experiments recently coming online or under
development.

Atoms in these experiments are confined by magnetic
fields in an ultra-high-vacuum chamber, so that they have no
contact with their environment. This allows the gas to be kept
very cold, while the remainder of the apparatus is at room
temperature. In our experiment, the fields provide a nearly
spherical harmonic potential, in which the 7Li atoms oscillate
with a frequency of ω ≈ 2π × 145 Hz. The density of the gas
is highest in the centre of the trap, and BEC occurs when this
peak density satisfies (1). An equivalent formulation, in terms
of the total number of trapped atoms N , is

N

(
h̄ω

kBT

)3

= 1.202. (2)

We observe BEC to occur at a temperature of 700 nK, with
roughly 1 million atoms in the trap. At this temperature, the gas
forms a cloud about 0.1 mm in diameter. When BEC occurs,
a significant number of atoms ‘condense’ into the quantum
mechanical ground state of the trap. Spatially, this ground
state consists of a narrow spike, about 6 µm in diameter, at the
very centre of the cloud. The atoms in this state have many
unusual properties.

Any standard textbook on statistical mechanics gives a
derivation of (1), and a description of BEC in its simplest
form [24, 25]. Fundamentally, understanding BEC means
understanding such an approach, but it is also useful to
try to develop a certain physical insight and intuition
about the subject. Because BEC is an explicitly quantum
mechanical phenomenon, it is outside the realm of direct
human experience, and is difficult to explain in ordinary terms.
However, many of its characteristics are shared with at least
somewhat more familiar processes, and an understanding of
it can to a degree be achieved through analogy with these
processes. In combination with more precise mathematical
descriptions, such analogies can be very fruitful.

For instance, BEC is a phase transition. That is to say, it is a
process in which a macroscopic collection of particles changes
physical state as its temperature is reduced. An apt example
from daily life is the condensation of water from the air as dew.
In the case of dew, the two phases are readily distinguished:
water droplets are dense and almost incompressible, and have
a well defined boundary separating them from the surrounding
vapour. In general, a Bose condensate cannot be so easily
identified. A better way to think of the change of state
occurring in BEC is by analogy with the Curie transition in a
magnetic material [26]. It well known that if a magnet is heated
sufficiently, it will be demagnetized as the atomic magnetic
moments composing it are randomized by thermal motion. As
the material is gradually allowed to cool, the magnetization
abruptly reappears at a critical temperature known as the
Curie point. The transition is abrupt because, once a few
neighbouring atoms find themselves aligned, they tend to force
other nearby atoms to align as well, spreading the order rapidly
through the material.

The Curie transition is easy to measure using a
magnetometer, but lacking such a device it would be very
difficult. It could be seen through subtle changes in the heat
capacity of the material, or by direct probes of the atomic
moments such as neutron scattering. Nonetheless, on the
atomic level the transition marks a substantial change, as atoms
from one side of the sample to the other all line up.

When BEC occurs in a gas, the atoms develop a uniform
quantum mechanical phase in much the same way that atomic
moments in a magnet develop a uniform orientation. Although
this phase itself is fundamentally unobservable by direct
means, it has a variety of effects which have been observed.
The analogy is, then, that BEC bears a relation to a gas which
is similar to the relation between the Curie transition and a
solid. In both cases, a type of global order develops which
is not necessarily apparent from an external viewpoint. The
analogy serves well to illustrate the fallacy of considering a
Bose condensate as a ‘fourth phase of matter’, after solids,
liquids and gases. Just as a magnetized chunk of iron is still a
solid, a Bose-condensed gas is still a gas.

The above analogy is of little help, however, in interpreting
the meaning of a collection of atoms having an identical
quantum phase. Fortunately, another more familiar example
of a similar phenomenon exists, which is laser light [27].
According to the wave/particle duality principle of quantum
mechanics, a beam of light must in some respects be considered
as an electromagnetic wave propagating through space and in
some respects as a stream of particles, termed photons. When
considered as a wave, the notion that a laser has a definite
phase is easy to comprehend: at a particular point in space,
there is an oscillating electric field whose phase is well defined.
(Note that ‘phase’ here is used with a different meaning than in
‘phase transition’.) In ordinary incoherent light, such as that
from an incandescent bulb, this phase is absent. Although an
electric field is present in both cases, in the latter it is randomly
fluctuating rather than smoothly oscillating in time, so a value
for the phase cannot be defined.

The electric field of a beam of photons is very much
analogous to the wavefunction of a beam of atoms, and physical
intuition developed regarding the one can be fruitfully applied
to the other. The fact that an electric field is ordinarily thought
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of as a classically defined and measurable quantity reflects
the fact that it ordinarily describes a macroscopic number of
photons. It is then possible to measure its amplitude and
phase to high precision without appreciably disturbing its
overall state. Matter wavefunctions more typically describe the
state of only a single particle, so that the familiar uncertainty
restrictions apply and the wavefunction cannot be directly
observed. This dichotomy does not necessarily hold, however,
as in the case of incoherent light described above, where the
electric field of each photon is different. (More precisely, the
probability of finding two photons in the same field mode
is small.) Similarly, the wavefunction of a Bose condensate
describes a large number of atoms, allowing the ‘atom field’
to be defined and observed to an unusual degree of precision.

The analogy between a Bose condensate and an electric
field does beg the question of what, exactly, an electric field
is. Nonetheless, given some familiarity with how laser beams
behave, the comparison is useful. It has been observed that
a Bose condensate forms a standing wave when confined in a
cavity such as an atom trap [28], that two condensates interfere
both in space [20] and in time [21] when overlapped and that
a condensate expanding from a small source behaves much
like light diffracting from a small aperture [11]. Just as for an
electric field in a laser, it is possible to define and in principle
measure a definite phase relationship between the atom field
at any two points of a condensate. This is the reason that the
order parameter associated with BEC is often described as the
quantum phase, though a more precise definition would be as
the condensate wavefunction itself.

The production of laser light relies on the ease of creating
photons from other forms of energy. In a typical laser, a
gain medium consisting of molecules in an excited state is
surrounded by an optical cavity. As the molecules relax to
their ground state they emit photons, a fraction of which are
reflected by the cavity mirrors back to the gain medium. The
electric field of this reflected light induces other molecules to
radiate their energy into the cavity as well, thus amplifying the
reflected light. As this continues, the amplitude of radiation in
the cavity mode builds up and lasing occurs.

BEC is a quite different process, even though the end
results are closely related. Since transforming other forms
of energy into matter is difficult, atoms cannot be simply
emitted into a cavity mode, but must be transferred to it from
elsewhere. Further, BEC is an explicitly thermodynamical
process, and describes the equilibrium state of the gas. A
laser is in an explicitly nonequilibrium state, and is only
maintained by continually adding energy to the system through
the replenishing of the gain medium. The analogy of a Bose
condensate to a laser beam does not, therefore, help answer
the question of why a Bose condensate forms.

Surprisingly, the analogy to the Curie transition also fails
to address this issue. The Curie transition, like all phase
transitions except BEC, occurs because of interactions between
the constituent particles. In the case of a magnet, neighbouring
atoms are coupled by electronic forces which, in the right
circumstances, creates a tendency for them to align. BEC,
in contrast, is predicted to occur even in a perfectly ideal gas,
and has been observed in very nearly ideal gases.

The answer lies in quantum statistical mechanics. A
Bose condensate forms for no other reason than that it is the

most likely configuration of a sufficiently cold collection of
bosonic atoms. The standard calculation is shown in many
textbooks, but involves abstractions such as the calculation of
the partition function and the choice of a particular ensemble.
A simple example serves better to illuminate the underlying
idea. Rather than considering atoms, which have an infinite
number of quantum states available, a finite system can be
used. In particular, imagine a set of N ‘Bose coins’, identical
particles which can each be in either of two states, H or
T , with equal probability. Consider the probability PH that
all of the coins are in state H . If the coins were classical,
distinguishable objects, each possible state of the collection
could be labelled by an enumeration of the states of each coin.
There are 2N distinct enumerations, so the probability of any
particular configuration, such as ‘HHH . . .H ’, would be 2−N .

If the coins are identical bosons, however, then it is
fundamentally impossible to determine whether a particular
coin is in a particular state. The configurations ‘coin 1 in H
and coin 2 in T ’ cannot be counted as distinct from ‘coin 1 in T
and coin 2 inH ’. In both cases all that can be said is that there
is one coin in H and one in T , so that only one configuration
can be counted. Each possible configuration of N coins can
thus be labelled simply by the number of coins in state H .
Since this occupation number can range from 0 to N , PH is
1/(N + 1). For largeN , this is tremendously greater than 2−N .

This example shows that, because of their symmetric
nature, a group of identical bosons is more likely to be found
all in the same state than a similar group of distinguishable
particles. In order to demonstrate how this brings about an
abrupt transition such as BEC, it is only necessary to allow the
probability of observing stateH to vary. In a physical system,
this occurs because at a finite temperature T , the probability
of finding an atom in a state with energy E decreases as
exp(−E/kBT ), a fundamental result of classical statistical
mechanics [25]. So, if the probability of a single coin being
in H is p, then p is related to the temperature of the real gas.
Specifically, the temperature is proportional to − lnp, so the
case p = 1 can be associated with T → 0 (assuming the state
H has lower energy than the state T ). If we allow p to vary
in this way, the relative probability of observing k coins in H
becomes pk(1 − p)N−k , so that the probability of observing
all N coins in H is

PH = pN∑
k p

k(1 − p)N−k . (3)

The denominator is the normalizing sum of the relative
probabilities of each possible configuration. Recognizing that
the sum can be expressed as a geometric series allows PH to
be simplified to

PH = pN(2p − 1)

pN+1 − (1 − p)N+1
, (4)

which in the limit of large N becomes

PH =
{
p−1(2p − 1) (p > 0.5)

0 (p < 0.5).
(5)

The function (4) is plotted in figure 1 for N = 1000. The
discontinuity at p = 0.5 is analogous to the phase transition of
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Figure 1. Phase transition in a set of quantum coins. The probability
PH that 1000 identical coins will be found all in state H is plotted
versus the probability p that a single coin will be found in state H .

BEC, and arises for the same reason. The counting argument
described is peculiar compared with the methods of normal
statistics, but it is precisely that used in the standard derivation
of BEC. It is instructive that it yields similar results even in so
simple a system.

The three models discussed in this subsection cover,
it is hoped, most of the more counterintuitive aspects of
BEC. However, they are analogies only, and have their
limits. Like the Curie transition, BEC is a phase transition
marked by the development of a global order that does not
necessarily correspond to a visible change in physical state.
In the particular case of a magnetically confined gas, there
in fact is an observable change of state, since the Bose
condensate is localized in the centre of the trap. But the
point of the comparison remains true, because the development
of a coherent quantum phase is certainly the fundamental
characteristic of BEC. The meaning of the quantum phase can
be understood by analogy with a laser beam, but the phenomena
are not the same. Atoms obey the Schrödinger equation, while
photons obey Maxwell’s equations; the detailed behaviour of
the two systems will be different. Finally, although a set
of quantum coins illustrates how the indistinguishability of
quantum particles can lead to a phase transition, the transition
obtained is not really BEC. For instance, the number of atoms
in the lowest-energy state increases abruptly when BEC occurs,
but when there are an infinite number of states available, the
probability for all the atoms to be in the ground state remains
negligibly small at any nonzero temperature.

1.2. Interactions

As mentioned above, BEC occurs even in an ideal gas of non-
interacting pointlike particles. However, all real gases are
composed of atoms which do interact. As the density of the
gas is lowered, the importance of interactions is reduced as the
atoms spend less and less time near each other. However, the
interactions never vanish completely, and necessarily have a
significant impact on BEC. Because of this significance, the
different effects of interactions are discussed at some length
here.

The vast majority of work on BEC has involved
liquid helium or superconductivity, where interactions are
complicated and have as important an effect on the behaviour of
the system as have the quantum statistical effects. In contrast,

the benefit of studying BEC in a dilute gas is that interactions
cause only a small perturbation to ideal-gas behaviour. In
particular, the density is low enough that there is a vanishingly
small probability for three atoms to be near each other at
the same time, so that three-body processes can usually be
neglected compared to two-body binary interactions.

An obvious binary process is the elastic collision, where
two atoms approach one another, interact as they pass and
then fly apart on altered trajectories. The total kinetic energy
of the two atoms is unchanged, but energy can be exchanged
between them. It is this exchange of energy that allows the
gas to come to thermal equilibrium, so that elastic collisions
are directly responsible for the actual occurrence of BEC. In
fact, consideration of these collisions alone provides a means
of analysing the equilibrium state of the gas. This approach is
explained here because it is relatively elementary but is not so
familiar as the usual development.

Suppose that the number of atoms in a gas in state A is
fA, and define Rc(A,B; C,D) to be the rate at which atoms
in states A and B collide and change their states to C and D.
Clearly, Rc must be proportional to fA and fB, since the rate
at which a collision occurs is proportional to the number of
atoms available to collide. Less clearly, Rc depends on fC and
fD. This is a consequence of the indistinguishability of the
atoms. If it were possible to label two atoms a1 and a2, then
the rate at which a1 and a2 collided would be independent of
the presence or absence in the gas of some other atom a3 in the
same state that a1 happens to acquire. However, such labelling
is impossible. One result is that Rc for a Bose gas is twice
as large as for an otherwise identical gas of distinguishable
particles, since it must include both collisions where the atom
initially in state A ends up in state C and ones where it ends
up in state D. In addition, if there were already atoms in state
C, then it is impossible to determine, after the collision, which
of those atoms was the one which collided. Since all possible
ways of getting to the same final configuration contribute to
the rate, Rc is proportional to the number of atoms in state
C after the collision, which is 1 + fC. An identical argument
applies if atoms in state D were present, so it must be that
Rc(A,B; C,D) ∝ fAfB(1 + fC)(1 + fD).

In equilibrium, the population of each state is, by
definition, constant. Normally, this occurs because the forward
and backward rates for each possible collision become equal.
Setting Rc(A,B; C,D) = Rc(C,D; A,B) yields a condition
on the populations f :

fAfB(1 + fC)(1 + fD) = fCfD(1 + fA)(1 + fB). (6)

It is another property of thermal equilibrium that any two states
with the same energy will have the same populations. It is
therefore possible to express fA as f (EA) = N(EA)/g(EA),
whereEA is the energy of state A,N(E) is the number of atoms
in the gas with energyE, and g(E) is the number of states with
energy E. If F is then defined as F(E) = f (E)/[1 + f (E)],
equation (6) simplifies to

F(EA)F(EB) = F(EC)F(ED). (7)

A further constraint arises because the collisions are elastic, so
that EA +EB = EC +ED. Since (7) holds for all energies, it is
true when EC = 0, which yields

F(EA)F(EB) = ZF(EA + EB) (8)

R4



PhD Tutorial

with Z ≡ F(0). The only function satisfying this relation is
F(E) = Z exp(−βE), with β arbitrary. Solving in turn for f
yields

f (E) = 1

Z−1 exp(βE)− 1
, (9)

the usual Bose–Einstein distribution function if β−1 is
identified with the temperature and Z with the fugacity. From
f , all other equilibrium properties of the gas are readily
determined. The power and simplicity of this argument
illustrate the importance of elastic collisions. For further
discussion of this subject, see section 3.1.

The actual rate for elastic collisions—the prefactor
multiplying Rc—must be determined numerically from
knowledge of the molecular potentialU(r), which specifies the
interaction energy between two atoms separated by a distance
r . The way this calculation is performed is discussed in
section 2. The result is that, at low temperatures, all of the
molecular physics can be expressed by a single number, the
scattering length a. For 7Li, a has the value −1.46 nm [29].

It is possible to understand why the scattering process
can be characterized by a single parameter without working
through the detailed calculation. As mentioned above, BEC
occurs when the de Broglie wavelength of the atoms in a
gas becomes comparable to the average interparticle spacing.
If the system is to be considered a dilute gas, however, the
interparticle spacing must be much larger than the range
of U(r). Otherwise, the particles would be interacting
continuously, and the system would be better described as
a liquid. It follows, then, that � must be much larger than
the range of U . Typically, the molecular potential is effective
across a distance of the order of 1 nm, and the de Broglie
wavelength is 1000 times greater. This means that it is incorrect
to think of the atoms bouncing off each other like marbles or
billiard balls. Rather, the collisions should be considered as
waves diffracting off very small obstacles. The obstacles are
so small that they can be considered as pointlike, in that it is
impossible for the scattered wave to carry away any details
of their structure. This is entirely analogous to the inability
of a microscope to resolve details much smaller than the
wavelength of light. The scattered field therefore must consist
of a spherical wave, which is characterized only by its (possibly
complex) amplitude. This amplitude is the scattering length.
The units of a can also be understood from this argument, since
a spherical wave is expressed as

eikr

r
, (10)

which requires an amplitude with units of length to cancel the
factor of r in the denominator.

The probability for a collision to occur is proportional to
the intensity of the scattered wave, and thus to a2. Indeed, the
collisional cross section is given by σ = 8πa2 for identical
bosons. The cross section gives the ‘effective size’ of an atom,
in the sense that if an atomic beam with a flux of F atoms per
unit time per unit area is incident on a single target atom, the
collision rate will be σF .

The previous discussion pointed out that an atom in an
ultracold gas is in one sense very small, since another atom
must be within a range of 1 nm or so in order to interact with it,

but in another sense very large, since its wavefunction extends
across 1µm or more. As a consequence, in a Bose condensate,
where the interparticle spacing is small compared to�, an atom
finds itself in a sense interacting with many other atoms at once,
but colliding only infrequently. This seemingly paradoxical
result is, of course, an expression of the particle/wave duality
fundamental to quantum mechanics discussed earlier.

One observable consequence of this situation arises
because, when two atoms have overlapping wavefunctions,
the molecular interaction shifts the energy of the pair. This
occurs because the interaction energy is very large when two
atoms are close, so that the average interaction energy can be
appreciable even if the probability of the atoms being close to
one another is small. The size of the energy shift is proportional
to the scattering length, since the amplitude of the scattered
wave is a measure of the effective strength of the interaction
potential. The magnitude of the shift can be computed from
this fact, using dimensionality arguments: if a pair of particles
has an unperturbed energy E which is shifted by  E, then
the dimensionless ratio  E/E must be proportional to a/�,
since � is the only other physical length scale characterizing
the particles. If there are many atoms within a distance�, then
the total shift will be

 E

E
∼ n�3 a

�
, (11)

where n is the density of atoms. The unperturbed energy E is,
however, related to � through E ∼ h̄2/m�2, so that the shift
itself is approximately

 E ∼ h̄2

m�2
n�3 a

�
= h̄2na

m
. (12)

A precise derivation is provided in chapter 2, and yields
 E = 4πh̄2na/m. This interaction energy is a mean-field
effect, since it is the result of averaging over the possible
locations of the atoms in the gas.

At the relatively low densities of a dilute gas, E is small
compared to the transition temperature for BEC:

kBTc

 E
= (2πh̄2/m)(n/2.6)2/3

(4πh̄2an)/m
≈ 1

an1/3
. (13)

The condition that the gas be dilute is just that na3 
 1, so
 E 
 kBTc. However,  E can easily be large compared
to the unperturbed energy of the Bose condensate. If the
condensate is confined to a volume of size " 3, its energy will
be E0 ≈ h̄2/m" 2. Therefore,

 E

E0
≈ h̄2an/m

h̄2/m" 2
= na" 2 ≈ N0

a

"
, (14)

where N0 is the number of atoms in the condensate and in the
last step the relation n ≈ N0/"

3 was used. The dilute-gas
condition, expressed in terms of N0, a and ", can be written
N

1/3
0 a/" 
 1. Applying this constraint to (14) shows that
 E/E0 must be small compared to N2/3

0 . However, N0 can
be very large, so that  E/E0 can still be much larger than 1.

The scattering length a can have either sign. It is negative
for 7Li and 85Rb, and positive for the other gases in which BEC
has been observed. When a < 0, E is also negative, meaning
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that the interaction between atoms is effectively attractive.
This presents a problem for largeN0, because the derivative of
the condensate energy with respect to density will be negative.
To understand the difficulty, suppose that the condensate would
have size " in the absence of interactions. Then in the presence
of interactions, the condensate will be smaller as the gas attracts
itself together. But when " decreases, the density rises, making
the interactions even stronger, which in turn further decreases
". There is no end to the process: the condensate can always
reduce its energy by decreasing " and increasing n. Eventually,
n reaches a−3, and the condensate can no longer be considered
a dilute gas. Rather than BEC, some other type of phase
transition occurs, from a gas to a denser liquid or solid phase.

Because of this instability, it was long thought that BEC
could not occur in a gas with a < 0 [30, 31]. However, the
problem only arises when N0 is so large that E0 is negligible
compared to  E. For smaller N0, the condensate energy will
be

E = E0 + E ≈ h̄2

2m" 2
+

4πh̄2N0a

m" 3
. (15)

Since E0 increases as " decreases, it provides a positive
pressure offsetting the attractive interactions, as long as N0

is small enough. The maximum possible N0 value which can
be supported is that at which the compressibility d2E/d" 2 =
0. Roughly, this occurs at N0 = Nm ≈ "/|a|. A
more precise calculation is discussed in section 2, and yields
Nm = 0.57"/|a| for atoms confined in a spherically symmetric
harmonic trap [32].

In our experiments " is approximately 3 µm, so Nm ∼
1250 atoms, substantially larger than 1. With this many atoms,
the quantum phase of the wavefunction is certainly well defined
and measurable, so the atoms do form a genuine condensate.
Furthermore, Nm increases as " increases, suggesting that
having negative a is not a significant limitation. However, as "
increases, the maximum condensate density Nm/" 3 decreases
rapidly. In comparison, the critical density for the BEC
transition depends only on temperature, so that the fractional
density of the condensate vanishes for large ". If the condensate
is to be distinguished, its density must be appreciable compared
to the density of uncondensed gas, so that in a large container,
BEC can only be observed at vanishingly small temperatures
when a < 0.

The third and last significant type of interaction is inelastic
collisions, which lead to heating and a loss of atoms from
the trap. Inelastic processes occur because the atoms are in a
highly excited, metastable state which can decay and release
energy. The atoms are excited in two different ways.

First, each individual atom is in an excited spin state. The
energy of an atom with magnetic moment m in a magnetic field
B is given by−m·B. The lowest-energy state is, therefore, the
one with m and B maximally aligned. The energy of this state
will always decrease as the field strength increases, so an atom
in this state will be attracted to a maximum in B. However,
Maxwell’s equations prohibit the existence of a maximum of
B in free space, so a magnetic trap is ordinarily constructed
by establishing a minimum in B, and trapping an atomic state
with m antiparallel to B. It is therefore possible for the spin,
which determines m, to relax to a lower-energy state.

In principle, an excited atom will eventually decay by
spontaneously emitting a photon, but the rate for this to occur is

very slow, on the order of once every 10 million years. Instead,
relaxation usually occurs during a collision, where the internal
energy can be transferred to the motion of the atoms. Linear
momentum is conserved by splitting the energy evenly between
the two atoms. However, since the spin state is changing, it is
necessary to conserve angular momentum too. If the atomic
moments are not already perfectly anti-aligned with B, it is
possible for one atom to flip and transfer its spin to the other;
this is called spin exchange. This process happens relatively
easily, but by storing the atoms with m and B perfectly anti-
parallel, we suppress it. Since both atoms start out with the
maximal amount of spin angular momentum, it is impossible
to transfer any from one to the other.

The second way to conserve angular momentum is to
transfer it from the spin of the atom to the orbital motion
of the two atoms about their centre of mass. The spin and
motional degrees of freedom are coupled by the interaction
of the two magnetic dipole moments, so this process is termed
dipolar relaxation. The dipole–dipole interaction is very weak,
so collisions of this type occur only infrequently, but they are
nonetheless the dominant loss mechanism in our experiment.
They proceed at a rate proportional to the density, since the
rate for a given atom to collide depends linearly on the number
of other atoms available for it to collide with.

Just as each atom is individually in an excited state, the
collection of atoms as a whole is only metastable. Lithium is
a solid metal at room temperature, and certainly prefers to be
a solid at the ultracold temperature at which our experiments
are performed. In order for a solid to form, however, atoms
must first bond to form molecules, molecules must join to form
clusters, and clusters must come together to form a crystal.
The initial stage of this recombination process cannot occur
during a binary collision. If two atoms were to collide and
stick together, the molecule formed would necessarily be at
rest in the centre-of-mass frame. However, a tremendous
amount of energy is released when the atoms bind, which
then has nowhere to go. If the process is to occur, a third
atom must be present in the collision to carry this excess
energy away. Even then, the energy released is generally
sufficient to allow all three atoms to escape the trap, so the
thermodynamically favoured crystallization process can never
get started. Ordinarily, the density of the gas is so low
that three-body collisions are very uncommon, and this loss
mechanism is not observed in our experiments. However,
mean-field interactions cause the density to increase greatly
when a condensate is unstable, and molecular recombination
does occur in that circumstance.

A final loss mechanism is due, not to interactions
between trapped atoms, but between trapped atoms and
untrapped, room-temperature molecules in the vacuum
chamber. Collisions with these background molecules knock
atoms out of the trap at a steady rate. In our experiment, the
vacuum pressure is low enough that this rate is small compared
to that for dipolar relaxation.

1.3. Dynamics of BEC in 7Li

The three types of interaction discussed above combine and
lead to a surprising richness of behaviour in BEC. This paper
will necessarily focus on the particular case of 7Li, but other
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systems are interesting as well. To give just one example, if two
condensates of different species are created in the same trap and
the mutual scattering length of the two species is positive, the
condensates will repel one another [23,33]. When the densities
are high enough, the condensates are immiscible, just like oil
and water. As mentioned previously, however, the condensates
are not liquids, but definitely gases. The possibility of oxygen
and nitrogen in the air spontaneously separating is an alarming
one, but the phenomenon occurs only because the condensates
are, in a sense, strongly interacting gases. Such gases represent
a new domain of physics, even aside from their phase-coherent
properties as condensates.

When a < 0, the strongly interacting regime is
unattainable, since N0 is limited. What happens, though, if
N0 is gradually raised from belowNm to above it? This occurs
naturally as the gas is cooled, since the condensate fraction
grows as T is reduced. Clearly, at some point the condensate
becomes unstable and begins to collapse upon itself. But how
is this collapse initiated? How does it proceed? What remains
in the trap when it is completed? It is these questions which are
the subject of our investigations here. Although many details
remain to be clarified, the general idea of this dynamics is now
known.

When a 7Li gas is cooled down to the critical temperature
for BEC, the condensate forms and begins to grow. Atoms are
transferred into the condensate through elastic collisions, but
because the collision rate is finite and an atom must generally
undergo several collisions before entering the condensate, the
growth of the condensate lags the cooling by an appreciable
amount. At first, the mean-field interactions in the condensate
are negligible, and the condensate is essentially like that of an
ideal gas. AsN0 rises, however, the attractive interactions start
to draw the condensate together. In our trap, it shrinks from a
ball initially about 6 µm in diameter to about 4 µm diameter
before becoming unstable.

As N0 approaches Nm, the stability of the condensate
becomes more and more marginal. Because the gas is not
at zero temperature, there is some thermal excitation of the
condensate motion: it jiggles, ripples, and pulsates in the
trap. At some point, this thermal motion causes the density to
increase enough that the condensate begins to collapse. Even
if the gas were at T = 0, the collapse would be initiated for
N0 < Nm by quantum mechanical tunnelling of the condensate
from the marginally stable state to a denser collapsing state.

Once initiated, the collapse proceeds quickly, in a time
on the order of the oscillation period of the atoms in the
trap. During the collapse, the density rises, and with it the
rate for inelastic collisions. When the density becomes high
enough for three-body recombination to be significant, the
losses start to limit the density increase and the collapse begins
to decelerate. It appears currently that the collapse halts with
a few hundred atoms remaining in the condensate, which then
re-expand. The atoms which are lost to inelastic collisions
acquire a large amount of energy, and rapidly leave the trap.
The process is thus reminiscent of a stellar nova, where a
star first implodes under its gravitational attraction and then
explodes, blowing off a fraction of its atmosphere and leaving
a core behind.

In the case of the trapped atoms, however, a surrounding
cloud of noncondensed gas remains. It is essentially unaffected

by the collapse, since the noncondensed atoms have too much
kinetic energy to be caught up in the collapse itself, and the
ejected atoms most likely pass through the cloud without
suffering further collisions. After the collapse is complete,
then, the filling process continues just as before. This leads to
a cycle of filling and collapse which continues until either the
noncondensed cloud runs out of atoms, or the gas is allowed
to come to equilibrium.

The following sections detail the experimental and
theoretical efforts that have gone into developing the preceding
story, and outline the questions that remain to be answered.

2. Theory of interacting condensates

In the limiting case of an ideal gas, a Bose condensate
is a reasonably simple object. It consists of many atoms,
each having the same wavefunction ψ0. This wavefunction
obeys the single-particle Schrödinger equation, so that
its characteristics and dynamical response can be readily
calculated using standard techniques. Any observable quantity
can be expressed as an expectation value overψ0 and evaluated.

The behaviour of a real gas, however, will be affected
by interactions between its constituent particles. Even when
the gas is dilute and the interactions weak, they can have
a profound influence. This is particularly the case for
attractive interactions, which limit the occupation number of
the condensate and effectively prevent BEC from occurring in
a spatially homogeneous system.

This section develops the methods used to account
for interactions, and to predict the dynamical behaviour
of the condensate under their influence. The presence of
noncondensed atoms is mostly ignored for the moment, but
will be taken up again in section 3.

2.1. Scattering and the nonlinear Schrödinger equation

In a dilute gas, the basic building block describing interactions
is the scattering event: two more or less independent atoms
approach each other, interact strongly but briefly, and then
depart. Any theory of many-particle interaction must start by
correctly describing this two-body process. The description
given here is very much ad hoc, but a comprehensive treatment
can be found in [34] and a more basic one in, for example, [35].

In the centre-of-mass frame, a collision between two
atoms which interact via a molecular potential U(|r1 − r2|) is
mathematically equivalent to the scattering of a single fictitious
particle with reduced mass m̄ = m/2 by a fixed central
potential U(r). The wavefunction of the particle will satisfy
the Schrödinger equation,(

− h̄
2

2m̄
∇2 + U(r)

)
ψ(r) = Eψ(r). (16)

At large r , it takes the asymptotic form

ψ(r)−→
r→∞ eikz + f (θ, ϕ)

eikr

r
, (17)

where the first term represents the incoming wave propagating
along an arbitrary direction z, and the second term is a scattered
wave expanding from the origin. The wavenumber k is given
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by k = (2m̄E/h̄2)1/2. The function f is termed the scattering
amplitude, and is to be determined in terms of U .

For a spherically symmetric potential, ψ can be expanded
as a superposition of eigenfunctions of angular momentum,
Ylm(θ, ϕ). Since the boundary condition (17) has azimuthal
symmetry, m will be zero and both ψ and f are independent
of ϕ. If ψ(r) = r−1ul(r)Yl0(θ), the radial wavefunction ul
will satisfy(

d2

dr2
+ k2 − l(l + 1)

r2
− 2m̄

h̄2 U(r)

)
ul = 0. (18)

At large distances, the two atoms interact via the van der Waals
force, so U behaves as C6/r

6 for r → ∞. The potential
term will therefore be negligible compared to the angular
momentum barrier at large r , unless l = 0. However, in the
low-energy limit k → 0, the classical turning point of the
motion will be at r ∼ l/k and the particle will be unable to
penetrate to small r and sample the potential. The solution
to (18) will therefore be independent of U , so no scattering
can occur. For this reason, the only partial wave contributing
to f as k → 0 will be l = 0.

For fixed small k, U can be neglected when
r � (C6/k

2)1/6. Typically this distance is on the order of
5 nm. At larger r , uwill be a solution to the free wave equation,
which can generally be expressed

u(r)−→
r→∞A sin(kr + δ) (19)

for arbitrary A and δ. The phase δ is determined by the
behaviour of u at small r; one way to determine it is to
numerically solve (18) for u(r), and fit its asymptotic form
to (19).

The total wavefunction ψ is therefore asymptotic to

ψ(r)→ A√
4π

sin(kr + δ)

r
≡ A′ sin(kr + δ)

r
, (20)

since Y00 = 1/
√

4π . The amplitude A′ is determined by the
boundary condition (17). The l = 0 projection of the incident
plane wave eikz is sin(kr)/kr , so the boundary condition can
be rewritten

ψ → 1

2ikr
[(1 + 2ikf )eikr − e−ikr ], (21)

while the asymptotic solution is

ψ → A′

2ir
(eiδeikr − e−iδe−ikr ). (22)

Equating the amplitudes of the incoming waves yields

A′ = eiδ

k
, (23)

and then equating the amplitudes of the outgoing waves
provides an expression for the scattering amplitude

f = eiδ

k
sin δ. (24)

To see how δ behaves as k → 0, it is useful to divide the
range of r into an internal part, whereU is appreciable, and an

external part, whereU can be neglected. If the division point rp
is small compared to k−1, then the form of the wavefunction in
the internal part will not depend significantly on k. Therefore,
the logarithmic derivative of the true radial wavefunction at the
radius rp,

u′

u

∣∣∣∣
rp

≡ γ−1
p , (25)

will be nearly independent of k. In the external part, ψ takes
on its asymptotic form, given by (19). The two expressions
and their derivatives must agree at rp, so that

γ−1
p = k

tan(krp + δ)
. (26)

Expanding the tangent function and solving for tan δ yields

tan δ = kγp − tan krp
1 + kγp tan krp

, (27)

which in the limit of small k becomes

tan δ = k(γp − rp). (28)

The term on the right of (28) appears to depend on rp, but
δ itself is a genuine physical quantity independent of the
arbitrary choice of division point. The dependence on rp
must therefore cancel, and δ must tend to zero like −ka for
some constant a. This constant is the s-wave scattering length,
known to be −1.46 nm for 7Li [29]. In the zero-energy limit,
the scattering amplitude f = −a, so the scattering length
completely characterizes an ultracold collision.

The scattering amplitude directly gives the partial cross
section for scattering into angle θ , by

dσ

d/
= |f (θ)|2, (29)

which can be derived by calculating the probability current

j = h̄

2m̄i
(ψ∗∇ψ − ψ∇ψ∗) (30)

for the scattered wavefunction (17). So, in the low-energy limit
the total cross section is σ = 4πa2. This result is modified
for identical bosons, however, since scattering by an angle θ
is indistinguishable from scattering by π − θ . Both processes
contribute coherently to the cross section, giving

dσ

d/

∣∣∣∣
θ

= 1

2
|f (θ) + f (π − θ)|2. (31)

The factor of 1/2 reflects the fact that half the flux is scattered
into an angle θ and half into π−θ . The net result is to increase
the s-wave cross section by a factor of 2, to σ = 8πa2.

It will be useful to express a more directly in terms of the
molecular potential U(r). One way to accomplish this is by
formally writing the scattered wavefunction as

ψ(r) = eikz +
2m̄

h̄2

∫
d3r ′G(r, r′)U(r′)ψ(r′). (32)

The kernel G is the Green function for the free space
Schrödinger equation, satisfying

(∇2 + k2)G(r, r′) = δ3(r − r′). (33)
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Figure 2. Summation of the ladder diagrams. The true molecular
interaction between atoms is strong, and must be calculated
to all orders in perturbation theory. This is equivalent to summing
the series represented on the left. Knowing the sum, however, the
interaction potential can be replaced with an effective potential which
gives the correct result in first order, as represented on the right.

That (32) gives a solution to (16) can be verified by direct
substitution. The Green function is

G(r, r′) = −exp (±ik|r − r′|)
4π |r − r′| , (34)

where the + sign in the exponent must clearly be used if the
boundary condition (17) is to be satisfied.

The asymptotic form of (32) is obtained by expanding G
using |r − r′| → r − r̂ · r′, and yields

ψ → eikz − m̄

2πh̄2

eikr

r

∫
d3r ′ exp(−ikr̂ · r′)U(r′)ψ(r′).

(35)
The integral in (35) is denoted T (kr,kz), and gives the
amplitude for a particle originally travelling with momentum
h̄kẑ to be found with momentum h̄kr̂. Comparison with the
results of the preceding section shows that

T (kr ,kz)−→
k→0

2πh̄2a

m̄
= 4πh̄2a

m
. (36)

This low-energy limit will be denoted T 2B , reflecting the fact
that it describes a two-body process.

A simple approximation suggested by the form of (32) is
to replace ψ in T 2B by the incident wavefunction eikz. This
is nothing but the Born approximation, and is valid when U
is weak. However, the molecular potential is not weak, and
the Born approximation is a poor one. It can be recovered,
however, through the use of a renormalization-like procedure.
If U is replaced by a new potential which yields the correct
value for T 2B in the Born approximation, then first-order
perturbation theory can be used with this modified potential,
and will give results correct to all orders. In diagrammatic
terms, this is equivalent to replacing an infinite sum of two-
body ‘ladder diagrams’ with a single modified diagram, as
suggested in figure 2.

Since the range of U is anyway very small compared to
the wavelength k−1, a suitable choice for a modified potential
is simply

Ū (r) = T 2Bδ3(r). (37)

This Ū is usually called the pseudo-potential, and has found
many applications in physics. It is important to remember that
it is only accurate when applied as a first-order perturbation.
A true delta-function potential gives no scattering at all.

With an understanding of binary interactions in hand,
the problem of an interacting condensate can now be
considered [36–38]. The condensate is characterized by

a many-body wavefunction 1(r1, r2, . . . , rN0), which is a
solution of the full Schrödinger equation

Ĥ1 =
∑
i

{
− h̄2

2m
∇2
i +V (ri )+

1

2

∑
j �=i
U(|ri−rj |)

}
1 = E1.

(38)
The trapping potential V is included. Since 1 is to describe
a condensate, it is expected to consist of a product of single-
particle wavefunctions

10(r1, r2, . . . , rN0) =
∏
i

ψ(ri ). (39)

The correct function for ψ can be determined using the
variational principle, since the best functional form will be
the one which minimizes the energy 〈10|Ĥ |10〉. However,
if arbitrary variations in ψ are allowed, the energy will
clearly be minimized by ψ = 0, which is unphysical. It is
necessary to maintain the normalization of ψ , or equivalently,
the expectation value of the number operator N̂ ,

〈10|N̂ |10〉 ≡ 〈10|
∑
i

1I|10〉 = N0〈ψ |ψ〉N0 , (40)

where 1I is the identity operator. This can be achieved by using
a Lagrange multiplier µ, and minimizing 〈10|Ĥ − µN̂ |10〉.
Hereµ plays precisely the usual role of the chemical potential;
it will subsequently be seen that µ in fact is the chemical
potential.

Evaluating the expectation value to be minimized yields

〈Ĥ − µN̂〉 =
∑
i

∫
d3ri

{
ψ∗
i (Hi − µ)ψi

+ 1
2

∑
j �=i

∫
d3rj ψ

∗
j ψ

∗
i Uijψiψj

}

= N0

∫
d3r

{
ψ∗(H0 − µ)ψ +

N0 − 1

2

×
∫

d3r ′ ψ ′∗ψ∗U(|r − r′|)ψψ ′
}
, (41)

with a subscript or prime indicating the argument of a function
and

Hi = − h̄
2

2m
∇2
i + V (ri ), H0 = − h̄

2

2m
∇2 + V (r). (42)

The interaction term will only be important when the
occupation number of the condensate is large, so its coefficient
can be safely simplified to N0/2. Minimization is carried out
using the variational calculus in the standard way, and results
in

δ〈Ĥ − µN̂〉 = N0

∫
d3r

{
δψ∗(H0 − µ)ψ + δψ(H0 − µ)ψ∗

+N0

∫
d3r ′ U(|r − r′|)ψ ′∗ψ ′[ψδψ∗ + ψ∗δψ]

}
. (43)

Integration by parts was used to rewrite theψ∗δ∇2ψ term, and
the dummy integration variables were interchanged on the two
terms of the form ψδψ ′. Since the real and imaginary parts of
ψ can be varied independently, the coefficients in the integrand
of δψ and δψ∗ must independently vanish, implying that{

H0 − µ +N0

∫
d3r ′ U(|r − r′|)ψ ′∗ψ ′

}
ψ = 0, (44)
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which is not quite right.
The problem with equation (44) is that the integral over

U is huge, and diverges for the physically plausible case of
particles with perfectly hard repulsive cores. What this points
to is a failure of the original trial wavefunction 10; in reality,
the condensate wavefunction is not just a product of single-
particle wavefunctions, but has a many-body correction part
which is important whenever |ri − rj | is small for some i
and j . Since the range ofU is very small, however, the product-
state approximation should be adequate almost everywhere,
and all that is needed is to know the effect of the many-
body part on the interaction energy. Fortunately, this effect
can be included nonperturbatively using the pseudo-potential
approach described above. It is simply necessary to replace U
in (44) with Ū ≡ T 2Bδ3(r − r′). The result is the nonlinear
Schrödinger equation (NLSE) [37, 38],

− h̄
2

2m
∇2ψ + V (r)ψ +N0T

2B |ψ |2ψ = µψ, (45)

which governs the behaviour of an interacting condensate.
Equation (45) shows that µ is indeed the energy of a single
atom in the presence of an existing condensate, which defines
the chemical potential µ ≡ ∂E/∂N [25].

In the case of 7Li, a and thus T 2B is negative, indicating
that the interaction energy of the condensate is negative. In
section 1, it was concluded from this that the condensate
occupation number must be limited, and this conclusion is born
out by numerical solution of (45) [32, 39, 40]. If a spherically
symmetric harmonic potential V (r) = mω2r2/2 is used, it
is found that solutions exist only when N0 is smaller than a
critical value Nm = 0.57"0/|a|, where "0 = (h̄/mω)1/2 is the
length scale of the condensate.

It will also be useful to express the total energy of the
condensate as a functional of ψ , or

E[ψ] = 〈10|H |10〉 = N0

∫
d3r ψ∗

×
[

− h̄2

2m
∇2 + V (r) +

N0

2
T 2B |ψ |2

]
ψ. (46)

The pseudo-potential has again been used to express the
interaction term. Note that the total energy of the condensate is
not the sum of the energies of the single-particle states. Rather,

E[ψ] = N0µ− 1
2N0T

2B
∫

d3r |ψ |4. (47)

This reflects the fact that the many-body part of the
condensate wavefunction makes a significant contribution to
the interaction energy.

The above discussion considered a time-independent
situation, but the dynamical equation governing the condensate
can be obtained with some additional effort [37]. As might
be expected from (45), the time-dependent single-particle
wavefunction 6(r, t) obeys

ih̄
d6

dt
=
(

− h̄
2

2m
∇2 + V + T 2B |6|2

)
6 (48)

with the separable solution 6 = ψ(r) exp(−iµt).

2.2. Variational approximation

The NLSE cannot be solved analytically, and even numerical
solution is difficult when the interaction term is significant
and negative, as will be discussed below. It is therefore
sensible to attempt approximate solutions, in order to obtain
some physical insight and a qualitative understanding of
the condensate behaviour. One approach described here is
based on a variational solution for ψ . In the absence of
interactions, the NLSE reduces to the normal Schrödinger
equation, and for a harmonic potential the solution for the
ground state is a Gaussian function. Furthermore, because
of the stability limit N0 < Nm, the interaction term can
never come to dominate the equation. A reasonable choice
for a trial solution, then, is a Gaussian function with variable
width. Wavefunctions of this form have been studied ever
since it was first realized that solutions to the NLSE existed
for a < 0 [41–43]. However, Stoof [43] has provided the most
careful and complete development, and his approach is mainly
followed here.

The true ground-state wavefunction ψ will minimize the
condensate energy. If V (r) = mω2r2/2 is used in (46), then
the trial wavefunction

ψ =
(
N0

π3/2" 3

)1/2

exp

(
− r2

2" 2

)
(49)

gives an energy

E(") = 3h̄2N0

4m

[
1

" 2
+
" 2

" 4
0

− 4

3
√

2π

N0|a|
" 3

]
, (50)

with "0 = (h̄/mω)1/2. Expressed in terms of the dimensionless
variable q = "/"0, the energy simplifies to

E(q) = 3N0h̄ω

4

(
1

q2
+ q2 − β

q3

)
, (51)

where

β = 4

3
√

2π

N0|a|
"0

(52)

characterizes the strength of the interactions.
The energyE is plotted in figure 3 for several values of β.

A local minimum near q = 1 is observed when β is small,
but the absolute minimum always occurs at q = 0. This
quantitatively confirms the argument expressed in section 1.2.
Note that, in reality, the energy will diverge to positive infinity
as q → 0, since the true molecular potentialU has a steep inner
wall arising from exchange effects. However, long before q
is this small, the density will become comparable to |a|−3 and
the treatment of the condensate as a weakly interacting gas will
fail. The graphs in figure 3 can only be taken to extend down
to q � |a|/"0 ≈ 5 × 10−4 for the 7Li parameters. This is,
however, quite far into the unstable region, so that many details
of a collapsing gas can be described by the NLSE.

If a local minimum at large q exists, it represents a
metastable state for the condensate. The maximum value of
β at which such a state is found is determined by solving
simultaneously

dE

dq
= d2E

dq2
= 0, (53)
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Figure 3. Variational calculation of condensate energy, using a
Gaussian trial wavefunction. The energy E of a condensate with
Gaussian radius " is shown as a function of q = "/"0. The strength
of the interaction is parametrized by β = 0.53N0|a|/"0, with
β = βc = 0.36 at the stability limit. Each curve is labelled with its
value of β/βc.
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Figure 4. Condensate size in the variational approximation.

which occurs at the inflection point marked with a dot in
figure 3. The values thus obtained are

qc = 5−1/4 (54)

and
βc = 8

3 5−1/4. (55)

From βc, the predicted value of Nm is found to be 0.67"0/|a|,
about 20% greater than the valued obtained numerically from
the NLSE. This comparison gives a measure of the accuracy
of the Gaussian wavefunction approximation. For N0 < Nm,
the solution of dE/dq = 0 gives the size of the metastable
condensate. Just before the collapse occurs, q shrinks to 0.67,
indicating a density increase of a factor of 3.3. The dependence
of q on N0 is shown in figure 4.

The true utility of the variational approach comes from its
application to dynamics. It is possible to show that the motion
of the condensate can be treated as the motion of a quasiparticle
with coordinate " and massm∗, moving on the potential surface
E(") [43]. This provides a simple physical picture for the
collapse process, where the quasiparticle is initially trapped in
the local minimum at q ∼ 1, but when N0 is increased and
the barrier falls, the condensate slides towards " = 0, like a
marble rolling down a hill.

One dynamical quantity easily calculated in this
framework is the frequency of the ‘breathing mode’ oscillation

0 500 1000 1500

100

200

300

N0

Figure 5. Breathing mode oscillation frequency ωB for 7Li in a
symmetric trap with ω = 145 Hz. The frequency approaches zero as
the condensate becomes unstable with respect to compression.

of the condensate, which is determined by the curvature ofE at
the metastable minimum. The curvature cannot be expressed
analytically, but is readily determined numerically by solving

dE

d"
∝ q − q5 − 3

2
β = 0 (56)

for qβ and using this value in

d2E

d" 2
= 3N0h̄ω

2" 2
0

(
3

q4
+ 1 − 6β

q5

)
→ 3

2
N0mω

2

(
5 − 1

q4
β

)
.

(57)
The breathing-mode frequency ωB is then obtained from

1

2
m∗ω2

B"
2
0 (q − qβ)2 = 1

2

d2E

d" 2
" 2

0 (q − qβ)2, (58)

or

ωB = ω
√

3N0m

2m∗ (5 − q−4
β ). (59)

The effective mass m∗ can be determined by ensuring that
ωB takes the correct value in the limit of a noninteracting gas
qβ → 1. Since each atom makes one half of a trap oscillation in
one breathing mode oscillation,ωB → 2ω andm∗ = 3N0m/2.
Thus ωB is simply

ωB = ω
√

5 − q−4
β , (60)

which correctly approaches zero as qβ → qc. The dependence
of ωB on N0 is shown in figure 5; a more complete treatment
can be found in [44].

The dynamical picture can also be used to understand the
initiation of a collapse. If N0 is close to Nm so that a barrier
is present but sufficiently small, the condensate will be able
to tunnel through it. Using a semi-classical approximation for
the tunnelling rate yields [43]

γ0 =
√
m∗ωBv

2
B

πh̄
exp

{
− 1

h̄

∫ "2

"1

d"
√

2m∗[E(")− E("1)]

}
,

(61)
where "1 is the location of the metastable minimum, "2 the
location on the inner side of the barrier where E = E("1),
and vB is a parameter characterizing the barrier, which is on
the order of ωB times the peak width. The rate is plotted as
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Figure 6. Collapse initiation rates γ as a function of condensate
occupation number, for 7Li in a symmetric trap with ω = 145 Hz.
The solid curves give the rates for thermal fluctuations at the
temperatures shown, and the dashed curve gives the quantum
tunnelling rate.

the dashed curve in figure 6. Note that the tunnelling process
is a coherent one involving all N0 atoms in the condensate.
This is one of very few situations in physics where a relatively
large composite object is predicted to exhibit tunnelling, and
observation of the phenomenon would be a truly remarkable
demonstration of quantum mechanics. Additional discussions
of the tunnelling rate are given in [42, 45, 46].

For a condensate in a finite-temperature gas, however, the
tunnelling effect is masked by the possibility for the collapse
to be initiated by thermal fluctuations. In equilibrium, the
breathing mode will be thermally excited, which can drive the
condensate over the barrier when the barrier height becomes
comparable to kBT . The rate for this to occur is approximately

γT = ωB

2π
exp

{
−E("m)− E("1)

kBT

}
, (62)

where "m is the position of the barrier peak. The rate is plotted
for several temperatures in figure 6. As can be seen, the thermal
excitation rate dominates even for quite low temperatures;
in order for tunnelling to be observed, an essentially pure
condensate is required.

Finally, the Gaussian approximation can be used to
investigate the dynamics of the collapse itself. Treated semi-
classically, the condensate in the unstable regime will obey
Newton’s equations

m∗"̈ = −dE

d"
, (63)

which can be solved numerically. However, during the
collapse, atoms are lost due to inelastic collisions, and these
losses must be accounted for by allowing N0 to vary in
time. Atoms are lost by two mechanisms, dipolar relaxation
and molecular recombination. Dipolar relaxation is a two-
body process which scales as the density n2, while molecular
recombination is a three-body process scaling as n3. The loss
rate from the condensate is therefore

Ṅ0 = −
∫

d3r

[
2G2

2
n(r)2 − 3G3

6
n(r)3

]
, (64)

which evaluates to

Ṅ0 = − N2
0

π3/2" 3

(
G2

2
√

2
+

N0G3

6
√

3π3/2" 3

)
(65)
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Figure 7. Collapse dynamics from the Gaussian approximation.
(a) The evolution of condensate size q in time. (b) The evolution of
occupation number N0. The condensate was initially taken to have
N0 = 1480 and q = 0.67.

for a Gaussian density distribution. The Gi are the rate
constants for the inelastic collisions. The coefficients in (64)
reflect the definition ofGn as the rate coefficient for collisions
in a nondegenerate gas. In each n-body collision, n atoms are
lost, which provides the numerators. The denominators arise
from the coherence properties of a condensate, which reduce
the rate for n-body collisions by n! [18]. The two coupled
equations for q and N0 can be solved together using standard
techniques. The results are shown in figure 7. It is seen that
the entire collapse occurs in less than a millisecond, and that
virtually all of the atoms are lost.

2.3. Numerical solution of the NLSE

The variational method described above is a powerful
technique which provides both physical insight and reasonably
accurate quantitative results, at least in the stable regime.
Although it makes predictions for the collapse dynamics, as
in figure 7, it is possible that the assumption of a Gaussian
wavefunction becomes inaccurate as the interaction energy
becomes dominant. It is therefore desirable to compare the
variational predictions with numerical solutions of the NLSE.

Numerical studies of the NLSE have a substantial history,
since the same equation governs several classical nonlinear
wave phenomena, notably in the propagation of deep-water
waves [47], the collapse of Langmuir waves in plasmas [48],
and the self-focusing of light waves in nonlinear media [49].
Zhakharov, in particular, has devoted much effort to the
subject [50]. Accurate modelling of the collapse is known
to be difficult, because of the large dynamic range in time and
length scales required. In addition, the numerical simulation
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Figure 8. Numerical solution of the NLSE using the parameters of
Kagan et al [51].

of trapped condensates involves several novel issues as to the
growth and loss mechanisms at work.

The most straightforward way to include losses and growth
in the NLSE is to add inelastic terms to the right-hand side
of (48),

−i

(
G2|ψ |2 +

G3

2
|ψ |4

)
ψ + iξψ, (66)

as in (64), also assuming a constant filling rate ξ . While this
heuristic approach is unlikely to be exactly correct, Kagan
et al [51] have used (66) to investigate the details of the
collapse process. They report two main results. First, when a
collapse occurs, roughly half the atoms in the condensate are
lost. An example of the time dependence of N0 is shown in
figure 8. This is in contrast to the variational model, which
predicts nearly all the atoms to be lost. Second, after the
collapse, the condensate remaining is in a excited state. This
excitation comes about because, after the collapse is halted,
the atoms which were caught up in the collapse but not lost
find themselves localized in a very small volume, and thus
have a great deal of kinetic energy. As this excitation evolves,
the condensate wavefunction becomes substantially different
from a Gaussian, which calls into question the approximations
of the variational approach.

Unfortunately, the parameters used by Kagan et al in their
study did not correspond well to the experimental parameters
of interest, so direct comparison with experimental results
is difficult. The results do, however, point out that many
aspects of the collapse process and condensate dynamics
are not well understood, and suggest a rich and complex
behaviour rewarding of further study. It is also to be hoped
that experimental efforts will help shed light on these issues, a
question which will be taken up again in section 4.

3. Kinetics of BEC

The previous section dealt with the properties of a Bose
condensate, but if a condensate is to be studied, it must first
be formed. Two processes are involved in this formation.
First is the essentially experimental issue of creating a gas
which is cold and dense enough for BEC to occur. One of
the techniques used is evaporative cooling, in which the most
energetic atoms in a thermal distribution are systematically
removed. As the gas re-equilibrates, it cools. Evaporative
cooling reduces the gas temperature by a factor of a thousand;

it is a crucial stage of experiments without which BEC would
not yet have been observed in a dilute gas. The second process
is the action of condensation itself, in which elastic collisions
deposit atoms into the ground state of the trap once the gas is
cold enough. It is important to understand the rate at which
this occurs, so that experiments can be performed on a suitable
timescale. Furthermore, when a < 0, the filling process affects
the condensate behaviour directly, and must be understood if
the dynamics of the collapse are to be accurately modelled.

Both of these issues relate to the redistribution of atomic
energies through elastic collisions, properly the study of gas
kinetics. In this section, kinetic theory is briefly developed
and our implementation described. The model is then applied
first to the problem of evaporative cooling [52], and then to the
behaviour of a quantum degenerate gas [53].

3.1. The quantum Boltzmann equation (QBE)

The goal of kinetic theory is to understand the behaviour of
the distribution of atoms in a gas. In classical mechanics, this
distribution is characterized by the function f (r,p), where

dN = d3r d3p

(2πh̄)3
f (r,p) (67)

is the number of particles in the volume d3r at position r

having momentum p in a range d3p. For a quantum gas, this
definition is inadequate since an atom does not have a well
defined position or momentum. The analogue of f is then the
Wigner function, which is an expression of the density matrix
in a mixed position–momentum basis [54]. For a thermal gas,
however, the quantum effects are small and a semi-classical
approximation is used here.

The classical equation governing the distribution function
f is [24](

p

m
· ∇r − (∇rV ) · (∇p) +

∂

∂t

)
f (r,p)

= I(r,p)−G(r)f (r,p). (68)

The left-hand side describes the motion of the atoms in the
potential V (r). Because atoms in a trap are not flowing as a
mass, it can be simplified considerably as will be seen shortly.
The right-hand side reflects collision processes. The elastic
term I is given by

I(r,p1) = 2π

h̄

|T 2B |2
(2πh̄)6

∫
d3p2 d3p3 d3p4

×δ3(p1 + p2 − p3 − p4)δ(E1 + E2 − E3 − E4)

×[f (r,p3)f (r,p4)− f (r,p1)f (r,p2)], (69)

with Ei = p2
i /2m and T 2B being the T -matrix defined

in section 2. This is essentially an expression of Fermi’s
golden rule for a transition from two particles with momentum
(p3,p4)→ (p1,p2) and the reverse. The population f (r,p1)

increases when two atoms with momenta p3 and p4 collide
and one acquires momentum p1, and the population decreases
when an atom with momentum p1 collides and acquires
a new momentum. The transition rates are summed over
the three other momenta involved, with the delta functions
conserving energy and momentum and expressing the density
of states. The T -matrix is, as noted in the discussion following
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equation (35), the matrix element for an atom to make a
transition between momentum states. In the low-energy limit,
it is a constant and is taken outside the integral. The factors
of h̄ and 2π provide the correct normalization for the integral.
Substituting the value of T 2B and simplifying, the prefactor
becomes

1

8π4

4π |a|2
m2h̄3 , (70)

where the expression 4πa2 is recognized as the s-wave
collisional cross section σ . As discussed in section 2.1, the
cross section is enhanced by a factor of two for a Bose gas, and
the same factor must be applied to (69). The correct prefactor
is therefore

σ

8π4m2h̄3 , (71)

with σ = 8πa2.
The second term in (68) represents losses from the trap,

and is given by

G(r) = G1 +
2G2

(2πh̄)3

∫
d3p f (r,p). (72)

Here G1 accounts for density-independent losses due to
collisions with background-gas atoms, and G2 is the rate for
dipolar relaxation collisions, as in (64). In our experiment,
three-body molecular recombination is only important in the
case of a collapsing condensate. Loss due to background gas
is generally negligible as well, but its inclusion is trivial.

If f is to represent a Bose gas, it is necessary to include
the stimulated scattering factors discussed in section 1.2. A
genuine derivation of these factors and the correctness of the
QBE in general is beyond the scope of this work [55]. However,
the Bose factors are a simple extension to the classical equation,
modifying I to

I(r,p1) = σ

4π4mh̄3

∫
d3p2 d3p3 d3p4

×δ3(p1 + p2 − p3 − p4) δ(p
2
1 + p2

2 − p2
3 − p2

4)

×[f3f4(1 + f1)(1 + f2)− f1f2(1 + f3)(1 + f4)]. (73)

The QBE is a nonlinear seven-dimensional partial integro-
differential equation, and its numerical solution is a substantial
computational challenge. A convenient simplifying approach
is to assume that the motion of atoms in the trap is ergodic [56,
57]. This means that an atom with a given energy is equally
likely to be found at any accessible point in phase space, and
that the motions of different atoms are uncorrelated. This
excludes collective motions of the gas as a whole, such as
pulsating, swirling or sloshing back and forth in the trap.
However, such motions are not driven in the experiment, and
any motion created, perhaps when the trap is loaded, would
be rapidly damped by collisions and by the trap anisotropy.
The ergodic approximation has been numerically justified by
Monte Carlo simulations of trapped atom distributions, both
by ourselves and others [58, 59].

Mathematically, the ergodic approximation means that
the distribution function f (r,p) depends only on the energy
H(r,p) = p2/2m + V (r). In general, the energy distribution
function f (E) is defined by

g(E)f (E) = 1

(2πh̄)3

∫
d3r d3p δ(E −H(r,p))f (r,p),

(74)

so that the number of atoms with energy E is

dN = g(E) f (E) dE, (75)

with density of states g(E). For a harmonic oscillator potential
V (r) = m(ω2

xx
2 + ω2

yy
2 + ω2

zz
2)/2, the density of states is

g(E) ≡ 1

(2πh̄)3

∫
d3r d3p δ(E −H(r,p)) = E2

2(h̄ω)3
,

(76)
where ω ≡ (ωxωyωz)1/3. The ergodic approximation consists
of the assumption that

f (r,p) =
∫

dE δ(H(r,p)− E) f (E). (77)

The equation governing f (E) is found by multiplying the
QBE by δ(E − H(r,p)) and integrating over r and p. The
result is

g(E)
∂f (E)

∂t
= I(E)−G(E)g(E)f (E). (78)

The flow terms on the left-hand side of (68) cancel, the collision
integral becomes

I(E1) = mσ

π2h̄3

∫
dE2 dE3 dE4 g(Emin)

×δ(E1 + E2 − E3 − E4)

×[f3f4(1 + f1)(1 + f2)− f1f2(1 + f3)(1 + f4)], (79)

and the loss rate is

G(E) = G1 +G2(2m)
3/2

(
2

πh̄

)3 ∫ ∞

0
dE′ E

5/2
<

E2

×h
(
E>

E<

)
f (E′). (80)

The energy Emin = min{E1, E2, E3, E4}, and E< is the lesser
of E and E′. The function h is the definite integral

h(x) =
∫ 1

0
dz z2

√
1 − z2

√
x − z2, (81)

well defined for x > 1.
The derivation of (80) is straightforward. It is useful to

note that the integral over r = (x, y, z) can be transformed to
an integral over s ≡ (ωxx, ωyy, ωzz), which restores spherical
symmetry to the anisotropic problem. The function h cannot
be reduced to closed form, but must be evaluated numerically.

In comparison, the simplicity of expression (79) is a truly
remarkable result. Its derivation, however, is more subtle, and
for this reason is presented here (see also [56]). The expression
obtained directly from (73) is

I(E1) = A

(2πh̄)3

∫
dE2 dE3 dE4 ϒ(E1, E2, E3, E4)

×
∫

d3r d3p1 . . . d
3p4 δ

3(p1 + p2 − p3 − p4)

×δ(p2
1 + p2

2 − p2
3 − p2

4)

4∏
i=1

δ

(
p2
i

2m
+ V (r)− Ei

)
. (82)

The function ϒ contains the factors of f , all of which have
been expressed in terms of energy using (77). The prefactor
of (73) is abbreviated A. Consider first the spatial and
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momentum integrals, which are completely symmetric in the
pi and Ei . The variables can therefore be relabelled to make
E1 = min{Ei}, so that for fixed r, p1 will be the smallest of
the pi . The integrals can then be rearranged as∫

d3r d3p1 δ

(
p2

1

2m
+ V (r)− E1

)

× 1

2m
δ(E1 + E2 − E3 − E4)

×
∫

dp2 dp3 dp4 p
2
2 p

2
3 p

2
4

4∏
i=2

δ

(
p2
i

2m
+ V (r)− Ei

)

×
∫

d2/2 d2/3 d2/4 δ
3(p1 + p2 − p3 − p4). (83)

The integral over the solid angles is evaluated as∫
d2/2 d2/3 d2/4 δ

3(p1 + p2 − p3 − p4)

=
∫

d2/2 d2/3
1

p2
4

δ(p4 − |p1 + p2 − p3|)

= 4π

p4

∫
d2/2

∫
dθ3 sin θ3

×δ(p2
4 − P 2 − p2

3 + 2Pp3 cos θ3), (84)

withP defined to be |p1 +p2| and θ3 taken as the angle between
p3 and P . For p1 = minpi , the delta-function contributes for
all angles /2, and the final result is

2π

p3p4

∫
d2/2

1

|p1 + p2| = 8π2

p2p3p4
. (85)

The last step is elementary, and again relies onp1 being smaller
thanp2. For the remaining integrals in (82), it is necessary only
to evaluate the delta-functions inp and recognize the definition
of the density of states, yielding

I(E1) = 4π2m2A

∫
dE2 dE3 dE4 g(Emin)

×δ(E1 + E2 − E3 − E4)ϒ, (86)

which expands to (79).
Equation (78) is solved as a set of coupled ordinary

differential equations in time on a discrete energy grid, so that
f (E) → fn. For a classical gas, the grid spacing is arbitrary,
but quantum effects can be included by demanding that the grid
spacing δE = jh̄ω, with integer j . Typically, 200 grid points
are used, with the highest energy corresponding to roughly
15kBT for a gas at temperature T .

Evaporative cooling is modelled by setting f (E) = 0
above a cutoff energy ET. As the gas cools, the energy grid
spacing is dynamically reduced by decreasing j , which is
initially on the order of 103 for a gas atT = 200µK. The results
of the model and its experimental realization are discussed
below

After BEC has occurred, it is necessary to account for
the instability of the condensate. During a time step dt ,
the rate for the condensate to collapse is calculated from
γ of equations (61) and (62). The temperature of the gas
is estimated from the distribution of population in the low-
lying levels. A random number x is then chosen, and if
x < γ dt , the condensate is taken to collapse. The collapse
occurs instantaneously on the timescale of the QBE, so it

is necessary only to know what is left when the collapse
is over. As discussed in section 2.2, this issue is currently
unclear. Typically, the collapse is assumed to consume the
entire condensate, and f (0) is set to zero. Other models can
be as easily used, however.

The correct treatment of a degenerate gas requires some
care. By setting the minimum-energy point of the grid to
the zero-point energy E0 = 3h̄ω/2, approximately the right
density of states is obtained

g(E)→ gn = (E0 + nh̄ω)2

2(h̄ω)3
= n2 + 3n + 9/4

2h̄ω
, (87)

where the actual degeneracy in an isotropic harmonic oscillator
potential is (n+ 1)(n+ 2)/2. If the zero-point energy were not
included, the condensate population f (0) would be undefined
since g(0) would be zero. Also, since f can be large and
discontinuous at n = 0, the ground state is always treated
singly, and not lumped with nearby states when j > 1; thus
g(0) is always taken to be unity.

It is reasonable to question the validity of the semi-
classical approximation for atoms in very low-lying states
of the trap. An estimate of the accuracy of the collision
rates used can be obtained by calculating the rate for inelastic
collisions between condensate atoms, given byG(0). This can
be compared with the actual rate determined using the Gaussian
ground-state wavefunction. The distribution function for a
gas consisting of N0 atoms at energy E0 is f (E) = N0

δ(E − E0)/g(E0). Using this f , the semi-classical
approximation to the loss rate from dipolar decay is found
using (80) to be

dN0

dt

∣∣∣∣
sc

= −128
√

3

135π3
G2
N2

0

" 3
0

≈ 0.05G2
N2

0

" 3
0

. (88)

Recall that the loss rate is reduced by a factor of 2 due to the
coherence properties of the condensate. From (65), the loss
rate in the variational quantum calculation is

dN0

dt

∣∣∣∣
q

= − 1

(2π)3/2
G2
N0

" 3
≈ 0.06G2

N2
0

" 3
. (89)

For small N0, mean-field interaction effects are small and
" ≈ "0. The error due to the semi-classical approximation is
therefore 20%. The collision terms for other low-lying states
will be inaccurate by similar but smaller amounts.

Note, however, that for large N0, mean-field effects
become important. For example, " can become significantly
smaller than "0, as seen in figure 3. This leads to a substantial
error in the collision terms involving the condensate. In
addition, interactions decrease the energy of the condensate
appreciably, changing the equilibrium population distribution.
Correctly accounting for interactions would require at each
time step a self-consistent calculation of the energy spectrum
and collision rates. This would comprise a substantial
theoretical effort, which has yet to be fully achieved [60, 61].
A discussion of some of the effects which might be expected
is given in section 3.2. Otherwise, the model used here can
provide only a qualitative description of the expected behaviour
at large N0.

Another numerical technique for solving the QBE is the
Monte Carlo method, in which the gas is represented by several
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Figure 9. Optimized evaporative cooling trajectories. (a) Solid
curves are optimized values of ET(t) for the initial values of N
shown. The initial temperature is 500 µK in each case. Dots show
the time at which BEC would be reached, if the Bose stimulation
factors were included in the calculation. (b) Response of the gas to
the cooling trajectories in (a). The phase-space density is shown in
terms of the critical point for BEC, > = 1. The long-dashed curves
show a typical unoptimized trajectory for comparison. For these
calculations, G1 = 10−4 s−1 and G2 = 10−14 cm3 s−1 [65]. The
dotted curve shows the cooling achieved when G2 = 10−15 cm3 s−1.

thousand model atoms whose trajectories and interactions are
calculated by various approximation schemes [58, 59, 62, 63].
Averaging of the states of the model atoms then gives the
thermodynamic properties of the gas, to some degree of
precision. This allows, for example, relaxation of the ergodic
approximation, and might more easily permit the incorporation
of mean-field interactions. A direct comparison of calculation
speeds is not available, but typically Monte Carlo methods are
slow.

3.2. Model results

The QBE is first applied to the simulation of evaporative
cooling, an essentially classical phenomenon. Evaporative
cooling has been generally described in [64], so it is
summarized only briefly here. The QBE is then applied to
the problem of BEC and the ensuing dynamics.

Evaporative cooling requires a mechanism to selectively
remove atoms from the trap based on their energy. As
discussed in section 1.2, the atoms are confined only if their
magnetic moment m is anti-parallel to B. Atoms can therefore
be removed by driving a transition between a trapped and
untrapped spin state using an oscillating transverse field. If
the untrapped state experiences a repelling potential energy

V ∗(r), then the energy difference V (r)− V ∗(r) has a strong
spatial dependence, and increases with r . An applied field
with frequency /T will be resonant only at positions where
V (r) − V ∗(r) = h̄/T. Atoms with energy E < V (r) will
never be found at such r, and thus will remain trapped, while
atoms with greater energies will be lost. In this way,/T defines
the depth of the trap ET.

The trap depth is typically set to be two to three times
higher than the average energy of the atoms in the cloud,
where 〈E〉 = 3kBT . When the oscillating field is imposed,
〈E〉 immediately decreases, and as elastic collisions attempt
to repopulate the missing tail of the distribution, cooling
continues. As 〈E〉 decreases, ET is lowered to keep pace.
If ET is reduced too quickly, too many atoms are lost for the
amount of cooling produced, but if ET changes too slowly,
atoms are lost due to background-gas collisions and dipolar
relaxation.

We perform evaporative cooling on a sample of ∼2 × 108

7Li atoms loaded into the magnetic trap and laser cooled
to a temperature of ∼250 µK. The atoms are held in the
(F = 2; mF = 2) doubly spin-polarized hyperfine state,
and are driven to the (F = 1; mF = 1) untrapped state.
The magnetic field at the centre of the trap is 103 G, and the
frequency of the spin-flip transition is approximately 3.4 GHz.
The microwave field is obtained from a digital frequency
synthesizer, and applied to a 2 cm diameter loop antenna placed
∼2.5 cm from the trap centre. Roughly 100 mW of microwave
power is applied to the antenna, of which an estimated half is
coupled into the trap chamber. The frequency /T is initially
70 MHz above the trap-bottom resonance, and is gradually
reduced. BEC is reached after approximately three minutes
of cooling, when /T is approximately 150 kHz above the
trap bottom, N ≈ 106 atoms, and T ≈ 700 nK. We use
an optimized trajectory /T(t) [52], which is important both
because it increases the temperature and number of atoms at
which BEC occurs and because it decreases the cooling time
required. Examples of the calculated trajectories are shown in
figure 9, for a variety of initial conditions. For these trajectories
the Bose stimulation factors (1+fi)were artificially suppressed
to demonstrate the predicted behaviour of a classical gas.

Having addressed the technical issue of producing a
quantum degenerate gas using evaporative cooling, we now
apply the quantum Boltzmann model to BEC itself. Of
particular interest are the effects of having the condensate
collapse, and the kinetics of condensate formation. It is
also useful to characterize the nonequilibrium distributions
observed in the model.

If the condensate did not collapse, then evaporative
cooling would produce results such as those shown in
figure 10(a). The BEC phase transition is clearly seen as a
rapid jump in condensate number. The subsequent decline in
N0 is caused by dipolar-relaxation collisions in the relatively
dense condensate. This is not a quantitatively accurate model
of the behaviour of a gas with a > 0, because it neglects mean-
field interactions, which become important for large N0 [60].
Qualitatively, however, the picture is correct. In contrast,
when collapses are included they yield the behaviour shown
in figure 10(b). Roughly 150 cycles of condensate growth
and collapse occur, finally ceasing when the total number
of trapped atoms N drops too low to allow further cooling.
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Figure 10. Modelling BEC with the quantum Boltzmann equation. (a) Behaviour obtained when the instability of the condensate is
disregarded. (b) Behaviour when collapses are included and assumed to reduce N0 to zero. For both plots, the gas is initially in a
nondegenerate equilibrium distribution with N = 4.5 × 106 atoms at T = 2.1 µK. Evaporative cooling is applied with parameters
simulating those used in the experiments described in section 4.
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Figure 11. Loss of atoms during evaporative cooling of a
degenerate gas. The total number of trapped atoms N corresponding
to the curve of figure 10(b) is shown. Until the very final stages of
cooling, N � N0.

A plot of N(t) is shown in figure 11. In the experiments to be
described, condensates can be observed most accurately when
N < 5×104, so the final portion of the time range in figure 10
is usually the focus of attention.

The details of the behaviour seen in figure 10(b) depend
on the collapse model used. As discussed in section 2.3,

there is no generally accepted theoretical prediction for the
number of atoms left in the condensate after a collapse. It was
assumed for the figure that the entire condensate is eliminated,
but other models can also be applied. Figure 12 shows the
results obtained when it is assumed (a) that the collapse leaves
half the atoms behind, and (b) that the collapse leaves a variable
number of atoms, with a probability distribution

PR(N0) = A exp

[
− (N0 −NR)2

w2

]
, (90)

with NR = 200 atoms and w = 100 atoms. Of these
possibilities, figure 12(b) agrees best with the experimental
evidence, as will be discussed in chapter 4. However, all three
predict qualitatively similar behaviour, in that N0 oscillates
between some minimum andNm as the condensate alternately
fills and collapses.

It is interesting to note that the last collapse in the
trajectories of figures 10(b) and 12(a) and (b) all occur at nearly
the same time. In part, this can be explained because the atoms
lost in the collapses make up only about 20% of the total loss
inN , so that the kinetics are mainly determined by losses from
evaporative cooling and dipolar relaxation. Furthermore, the
total number of atoms lost in collapses is very similar in all
three cases, 1.95±0.01×105 atoms. Clearly, atoms are driven
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Figure 12. Alternative collapse models. The simulations of figure 10 are repeated assuming that (a) each collapse reduces N0 to Nm/2, as
proposed by Kagan et al, and (b) that a collapse leaves behind a random number of atoms according to a Gaussian distribution (90).

into the condensate at an average rate which is fundamentally
fixed by the evaporative cooling process and independent of
the detailed condensate dynamics.

The dynamics of N0 also depend on the initiation
of the collapse by thermal fluctuations. Because of this
stochastic element, there is a dephasing of the collapse/fill
cycles. If an identical trajectory is simulated twice with
different random number generation sequences, the results
eventually become uncorrelated. Typically this takes about
40 collapses in the QBE model, corresponding to roughly 5 s
in figure 10. In principle, a measurement of this decorrelation
time under various conditions could provide information about
the initiation process. However, N0(t) is also quite sensitive
to experimental variations in the temperature and number of
atoms at the beginning of evaporative cooling. A 10% variation
in the initial number of atoms shifts the time of the first collapse
by ∼2 s. So, if the dephasing due to thermal fluctuations is to
be observed, the trap loading process must be well controlled.
In any case, it is clear that once many collapses have occurred,
the value of N0 at a particular time will be unpredictable.

In figure 10, the gas is never in equilibrium, since
evaporative cooling is taking place. To exhibit the equilibration
process itself, cooling can be halted and the gas allowed
to evolve freely. An example of the response is shown in
figure 13. Inelastic collisions in the gas and in the condensate
cause N to decrease and T to rise, lowering the phase-space

density > and slowing down the rate at which atoms enter the
condensate. Eventually, the gas comes to equilibrium with
some N0 < Nm, after which time N0 decreases as > continues
to drop. In figure 13, equilibration occurs 40 s after the cooling
perturbation.

This equilibration time is surprisingly long. The mean
collision rate for the conditions shown is approximately 0.5 Hz,
so that each atom collides 20 times on average before N0

stops increasing. This indicates that it is unlikely for an
average collision to produce a condensate atom, even though
the rate for this process is enhanced by a factor of N0. If
the condensate number were not limited so that N0 could be
larger, equilibration would be much faster, although the higher
condensate density in this case also increases the loss rate and
makes direct comparison difficult. Equilibration is also faster
in a nondegenerate gas, requiring only ∼5 collisions per atom.

The relatively slow equilibration of a degenerate gas
indicates that an average collision is unlikely to produce a
condensate atom. This can be understood from the fact that
the volume of the condensate in phase space is very small. A
collision giving an increase in N0 must take place at the very
centre of the cloud, and between two relatively cold atoms.
This statement can be quantified using (79), which gives the
rate for any particular collision process. The rate of increase
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Figure 13. Modelling equilibration. Evaporative cooling is
simulated as in figure 10(b), but at t = 17.6 s, ET is abruptly
lowered to 12 kHz = 500 nK. Cooling is then halted and the gas
allowed to equilibrate. This corresponds to the experimental
procedure used in section 4.
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Figure 14. Rate R0 for atoms to enter condensate, as a function of
level energy E. From (93), for N0 = 1000 atoms and T = 150 nK.

of the condensate population is

g(E0)
df (E0)

dt
= Ag(E0)

∫
dE3 dE4 f (E3)f (E4)[1 + f (E0)]

×[1 + f (E3 + E4 − E0)], (91)

which for N0 � 1 can be expressed as

dN0

dt
= N0

∫
dE g(E)f (E)R0(E), (92)

where R0(E) is the rate at which an atom with energy E is
likely to enter the condensate. It is given by

R0(E) = A

g(E)

∫
dE′ f (E′)[1 + f (E + E′)], (93)

and is plotted in figure 14 for an equilibrium gas. It does indeed
decrease quickly as a function ofE, indicating that most of the
atoms entering the condensate come from a relatively small
number of low-lying energy levels.

This argument suggests the three-state picture shown in
figure 15. The upper level |b〉 represents the majority of the
trapped states, which are not well connected to the condensate
state |0〉. Instead, they are weakly connected to a group of low-
lying states represented by |a〉. The γij parameters describe
the coupling between levels, with

γab 
 γ0a. (94)

γ
ab

γ
0a0

a

b

Figure 15. Three-level model of condensation process. Level |0〉
represents the condensate, level |a〉 a group of low-lying states and
|b〉 the majority of the occupied states of the trap. Population is
transferred between levels at the rates γij .
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Figure 16. Initiation of BEC. A nondegenerate gas initially at
T = 500 nK with N = 2.2 × 105 atoms is cooled at t = 0 by
removing all atoms having E > T . The gas then freely evolves,
undergoing BEC at t ≈ 10 s.

Because of their strong coupling, the populations of states |0〉
and |a〉 are always close to equilibrium. The population Na
therefore saturates at some level given by the Bose–Einstein
distribution, with any excess atoms rapidly entering the
condensate. Because of this saturation, the Bose enhancement
of γab never gets very large.

This picture of the filling process explains many aspects
of the condensate dynamics. For instance, figure 16 shows the
response of an initially nondegenerate gas when evaporative
cooling is suddenly applied. At t = 0, all atoms with energy
greater than T are removed, and the gas is then allowed to
equilibrate. As can be seen, there is an appreciable delay before
condensation occurs. This delay can be understood as the time
required for enough population to be transferred from the high-
lying energies |b〉 to saturate the states |a〉. Once this occurs,
N0 starts to grow.

The picture also explains the shape of N0(t) following
a collapse, as seen in figures 10 and 12. An expanded view
is shown in figure 17. There are two phases to this filling
process. The condensate first must come to equilibrium with
the low-lying states |a〉. The transfer rate γ0a depends strongly
on N0 through the Bose stimulation factor, so this process
accelerates as the condensate fills. However, once equilibrium
between |0〉 and |a〉 is established, the growth in N0 levels
out. In figure 17, this occurs at N0 ≈ 200 atoms. After
this point, N0 grows linearly, reflecting the constant addition
of atoms to the |0〉–|a〉 subsystem from |b〉. If the gas as a
whole is approaching equilibrium, γab itself decreases, causing
the condensate growth to slow and correspondingly slowing
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Figure 17. Filling curve. An expanded view of a portion of
figure 13, showing the shape of N0(t) after a collapse.

down the collapse/fill cycle. This can be seen in the long-time
behaviour of figure 13.

Recall, however, the discussion at the end of section 3.1,
noting that the QBE model neglects important mean-field
interaction effects when N0 is large. In particular, as the
condensate fills, E0 decreases, which shifts the equilibrium
between the |0〉 and |a〉 states. This should cause the
condensate to fill faster than the QBE predicts. An estimate of
the size of the effect can be made by considering the shift in the
equilibrium population of the condensate due to the interaction
energy. In equilibrium, the population of each quantum state
is given by the Bose–Einstein distribution

f (E) = 1

exp[(E − µ)/kBT ] − 1
, (95)

where the chemical potential µ satisfies

e−βµ = 1 +
1

N0
(96)

when the ground-state energy E0 is taken to be zero. For
specified values of N and T , N0 is found by adjusting µ to
give

N =
∫

dE g(E)f (E)→
∑
n

(n + 1)(n + 2)

2
f (En). (97)

Ordinarily, the energy of the nth excited state isEn = nh̄ω, but
if interactions lower E0 by δh̄ω then the excited-state energies
are effectively raised, to

En = (n + δ)h̄ω. (98)

Just before the condensate collapses, the energy shift obtained
from (50) is 0.4h̄ω. Comparing the determinations ofN0 with
and without this δ indicates that the interactions increase N0

by ∼350 atoms at T = 150 nK and N = 1.44 × 104. This
is a significant effect, since it is a sizable fraction of Nm.
It is, however, only an upper bound since interactions will
lower the energy of the excited states as well. The equilibrium
effect could be calculated accurately using the methods of [39]
or [40].

An accurate calculation of the dynamical effect of this
interaction energy is more difficult, for the reasons previously
discussed. An attempt was made to use the three-level system

Oven Zeeman Slower

Deflection Laser Collimation Laser
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z10 cm

Atomic
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Figure 18. Schematic diagram of experimental apparatus.

as an approximate model, and indicated that the interaction
shift causes roughly a 20% increase in the condensate fill
rate for large N0. However, the quantitative accuracy of the
three-level model is questionable. In particular, the choice
of energy level splittings required to reproduce the filling
curve of figure 17 gives a substantially smaller equilibrium
population shift than that calculated above. This suggests that
the dynamical effect may in reality be somewhat larger.

4. Experimental results

The previous sections have depicted a condensate witha < 0 as
a highly dynamical object, with violent collapses interspersed
among periods of growth. We wish to experimentally observe
as many aspects of this behaviour as possible. Previous work
has demonstrated that the condensate occupation number is
limited to a value in agreement with predictions [66], and
in this section observations relating to the dynamics of the
condensate are described. Owing to the difficulty of making
precise measurements on samples of a thousand atoms or less,
these observations are perforce indirect. Nonetheless, a wealth
of information is obtained, which both qualitatively confirms
the predictions of the theory and points out limitations in its
quantitative accuracy.

The experimental apparatus and procedures are only
summarized here, since they are more thoroughly discussed in
other works [66–68]. The general techniques of laser slowing
and cooling are described at a basic level in [69]. Data and
analysis pertaining to our measurements of the distribution of
N0 values are described in detail, as well as a related series of
experiments illustrating the equilibration process.

4.1. Apparatus and data acquisition

The experiments reported here were carried out using the same
apparatus with which BEC was originally observed in 7Li in
1995, with improvements made to increase repeatability and
detection sensitivity. A schematic diagram of the apparatus is
shown in figure 18. It consists of two main sections, a slow-
atom source and a magnetic trap. The source is based on a
laser-slowed atomic beam. A recirculating oven containing a
few grams of lithium metal is heated to 600 ◦C, producing a
beam of about 1014 atoms s−1.

Atoms in the beam with velocities of about 500 m s−1

or less are laser cooled to a velocity of 50 m s−1 by a
Zeeman slower. Slowing occurs as atoms scatter photons out
of a counter-propagating laser beam, and an inhomogeneous
magnetic field is used to compensate for the changing Doppler
shift of the transition. Approximately 1% of the atoms exiting
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Figure 19. Trap magnet geometry. The cylinders are permanent
magnets of the indicated polarity, and the frame is a stainless steel
yoke.

the oven are slow enough to be cooled in this way, so the
beam emitted from the Zeeman slower is composed of a small
low-velocity fraction together with a fast-atom background.
These components are separated by a transverse cylindrically
focused laser beam. The fast atoms scatter few photons while
passing through this beam, while the slow ones are deflected by
an angle of 30◦. The cylindrically focused laser compensates
for the Doppler shift of the atoms as they are deflected, and
thus provides a more collimated slow-atom beam. The atoms
are further collimated and guided by a set of four laser beams
configured as a two-dimensional optical molasses. The atoms
enter the trap chamber through a narrow tube, which allows for
good differential pumping. En route, the atoms are optically
pumped into the (F = 2,mF = 2) hyperfine state.

The trap itself is constructed from six NdFeB-alloy
permanent magnets, using the geometry shown in figure 19.
The magnets provide a confining field with a minimum of
1000 G and a trap depth of 140 G, or about 10 mK. The trap
itself is almost cylindrically symmetric, with atoms oscillating
at frequencies of 135.5, 150.6, and 152.6 Hz along its three
principal axes. Confinement is weakest in the direction along
the magnetic field, which is labelled as z in figure 18. Atoms
enter the trapping region and are slowed down to ∼1 m s−1

by a set of six laser beams, and the atoms are then confined.
Loading saturates at an estimated 2 × 108 atoms in a few
seconds; this number is probably limited by losses due to
optical pumping into untrapped spin states. The atoms are
loaded at a temperature of ∼0.5 mK using relatively intense
laser beams, with I ∼ 40 mW cm−2 per beam. After loading
the intensity is reduced by a factor of ∼100 for 10 ms, and then
ramped off. This cools the atoms to 250 µK, near the Doppler
limit of 140 µK. The resonant optical density of the cloud is
then 10 or greater, and this high opacity is probably responsible
for the inability to achieve the actual Doppler temperature limit.

After the atoms are loaded and cooled, all the laser beams
are shut off and the atoms are held purely by magnetic forces.
Evaporative cooling is then applied, as described in section 3.2.
By continually removing the high-energy tail of the thermal
distribution, the atoms are gradually cooled, and after roughly
three minutes BEC occurs with N ≈ 106 and T ≈ 700 nK.
In the experiments described here, evaporative cooling is
continued until N ≈ 4 × 104 atoms and T ≈ 150 nK, which
occurs when the evaporative cooling microwave frequency is
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Figure 20. Schematic diagram of imaging system, showing the
atom cloud A, vacuum viewport B, achromatic doublets C and E,
phase-contrast imaging polarizer D, correction lens F, primary
image G, microscope objective H, and CCD camera J. The dark grey
area represents the probe beam and the light grey one the coherently
scattered light.

about 10 kHz above the trap-centre resonance. The 3.4 GHz
microwave frequency must therefore be stable to better than
1 kHz, which is easily achieved using a digital frequency
synthesizer. However, the trap magnetic field itself must
similarly be stable to better than one part in 106, which is
more difficult. Since the magnetization of the permanent
magnets depends on their temperature, the trap is regulated
with heaters and the microwave power used for evaporation is
adjusted during cooling to provide a constant heat load. These
procedures reduce field fluctuations to ∼1 mG, corresponding
to a variation in N of ∼104 atoms from one repetition of the
experiment to the next.

Once a condensate is produced, it is observed using the
phase-contrast polarization imaging technique described in
[68]. A schematic diagram of the imaging system is shown
in figure 20. A probe laser is directed through the cloud and a
lens system, onto a CCD camera. The lens system consists of
two off-the-shelf achromatic doublets, which relay an image
of the cloud outside the vacuum chamber, a custom corrective
lens to reduce spherical aberrations and a microscope which
magnifies the image onto the CCD. A vacuum viewport is in
front of all the lenses, and a polarizer between the doublets is
used for phase contrast imaging.

The intensity of the probe beam is reduced as atoms scatter
photons out of it, and this absorption can, in principle, be
imaged to provide information about the cloud. In addition,
the gas as a whole has a substantial index of refraction, so
that the light passing through the cloud acquires a phase
shift. If the imaging system were perfect, this phase could
be ignored, since it would not change the measured intensity.
All real lenses, however, will make errors in reconstructing
the phase, which cause distortions and reduce the fidelity of
the image. To avoid this problem, the probe laser is detuned
significantly from resonance, lowering the index of refraction
and the corresponding phase shift. Typically, the detuning
 = ±40B, where B = 6 MHz is the linewidth of the atomic
transition. Because the absorption decreases as 1/ 2 and the
index as 1/ , making the phase shift small enough to avoid
imaging distortions makes the absorption too small to observe.

This problem cannot be overcome by simply increasing
the probe intensity or the exposure time, since as the atoms
scatter photons they are significantly perturbed. For the
experiments here, the probe is pulsed on for τp = 6 µs with
an intensity of 3 W cm−2. During this time each atom scatters
about ns = 10 photons, which heats the gas to roughly 20 µK
and destroys the condensate. However, during the pulse the
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atoms on average move only a distance

δx = 2
3vRτp

√
ns (99)

transverse to the probe beam, where vR = 8.5 cm s−1 is the
recoil velocity of a lithium atom. In our case, δx ≈ 1 µm,
which is small enough to provide an accurate image.

Because of this limitation, the phase shift caused by the
cloud must be imaged directly. This can be achieved in a
variety of ways [70,71]. The technique used here relies on the
fact that atoms in a large magnetic field are birefringent. The
probe laser is tuned near the (mJ = 1/2,mI = 3/2)↔ (mJ =
3/2,mI = 3/2) transition, so  m = +1. The strongest
alternative transition is (mJ = 1/2,mI = 3/2) ↔ (mJ =
1/2,mI = 3/2), which is detuned by approximately 1.5 GHz
≈ 250B. Therefore, only the σ +-polarized component of
the probe interacts with the atoms, and the scattered and
transmitted fields will generally have different polarizations.
In our case, the probe polarization is linear with the maximum
possible σ + projection and the scattered field is elliptically
polarized. A polarizer in the lens system projects both fields
onto a common axis, so that when the fields recombine in the
image plane they interfere, providing an intensity modulation
sensitive to the initial phase shift.

The polarization phase contrast system is convenient in
several ways. The angle ϑ between the polarizer axis and the
probe polarization is readily adjusted, so it can be optimized
as experimental conditions vary. The system is also easy to
set up, as it is necessary only to add a polarizer to a normal
phase-insensitive imaging system. However, it gives a smaller
signal than some other imaging techniques, which can be a
drawback.

As mentioned, the phase shiftφmust be kept small to avoid
image distortions. In terms of the resonant optical density of
the cloud α [27],

φ = α /B

2I0/Isat + 4( /B)2 + 1
, (100)

where I0 is the intensity of the probe and the saturation intensity
Isat = 10 mW cm−2 for the transition and geometry used.
Typical degenerate clouds of 4 × 104 atoms have α ∼ 5–10,
giving φ ∼ 0.05 rad for a probe with  = 40B and I0 =
300Isat. In the limit of small φ, the signal intensity in the
image plane is

Is(r) = I0
[

cos2 ϑ +

√
3

4
φ(r) sin 2ϑ − 3

16
φ(r)2 cos 2ϑ

]
,

(101)
where I0 is the incident intensity. For the experiments here,
ϑ = 82.5◦, close to 90◦ so that the signal-to-background
ratio is large, but not so close that the quadratic term in (101)
becomes significant. Generally, the reduced signal

S ≡ Is

I0 cos2 ϑ
− 1 =

√
3

2
φ tan ϑ (102)

is considered, which gives an observable linearly related to
φ. The background I0 cos2 ϑ is measured separately for each
experimental run by taking an additional image after emptying
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Figure 21. Signal profiles of degenerate clouds, taken 10 s after
evaporative cooling was halted. The points represent angular
averages of the reduced signal S taken from three different images.
The error bars on the upper trace show the estimated uncertainty due
to shot noise. The solid curves are fits to the nonequilibrium
distribution function (104). For the three traces, the fits give:
(a) N = 1.17 × 104, T = 124 nK, N0 = 916 and A = 1.6,
(b) N = 1.03 × 104, T = 106 nK, N0 = 405 and A = 2.3 and
(c)N = 1.04 ×104, T = 108 nK,N0 = 95 and A = 2.3. For clarity,
the signal in trace (a) is offset by 0.02 and in trace (b) by 0.01.

the trap. Since α is related to the density profile of the atoms
by

α = σL
∫

dz′ n(r), (103)

the signals obtained are direct images of the column density
of the cloud. The light-scattering cross section σL = 4π/k2,
and the integral is along the propagation direction of the probe
beam.

The images obtained are analysed by fitting the observed
spatial profiles to a model. Because the gas is not in
equilibrium, the images are not well described by the ordinary
Bose–Einstein function, but the the QBE model predicts that
the energy distribution can be described well by the simple
form

f (E) = A
exp[β(E − µ)] − 1

(104)

where A, β and µ are fit parameters. At low energies,
this function looks much like the ordinary Bose–Einstein
distribution, but at high energies it approaches a Boltzmann
distribution with chemical potential which can be larger
than zero for A > 1. This reflects the fact that, in the
nonequilibrium distribution, there is an excess of atoms at high
energy which have yet to find their way into the condensate.

The image signals are processed by averaging the two-
dimensional images around ellipses of appropriate asymmetry
to generate a radial signal profile. Examples are shown in
figure 21. Agreement between data and fit is generally good.

The ripples apparent in the upper plot of figure 21 are
an artifact of the limited resolution of the imaging system.
Neglecting interaction effects, the condensate has a Gaussian
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profile with a 1/e-radius of 3.1 µm. The imaging aperture
is limited to f/5.5 by the vacuum viewport through which
the cloud is observed, so a diffraction-limited imaging system
would have an Airy spot of radius 4.1 µm. Since the object
size is comparable to the resolution, imaging limitations are
important, and it is desirable that the lens system be both
as ideal and as well characterized as possible. The imaging
system used here is similar to that described in [68], but
with a different microscope objective and the addition of the
corrective lens. The system is nearly diffraction limited, but
measurably different.

Aberrations are characterized by the phase errorW(ρ) as
a function of location on the lens [70,72]. This is the difference
in optical path length experienced by a ray passing through the
actual lens at position ρ and an ideal lens. The effect of the
aberrations on the image is found by convolving the modelled
object electric field Eobj with the point transfer function,G(r):

Eimg(Mr) =
∫

d2r ′G(|r − r′|)Eobj(r
′). (105)

Here M is the magnification. The point transfer function is
simply the Fourier transform of the phase error,

G(r) = 1

(2π)2

∫
N

d2k eik·r exp(ikW(k)), (106)

where the wavevector k corresponds to a point on the lens
as shown in figure 22. The integral is over the lens aperture
N, and yields the familiar Airy pattern when W = 0. For a
cylindrically symmetric system,W can be expanded as

W(ρ) = C2ρ
2 + C4ρ

4 + C6ρ
6, (107)

where ρ is the distance from a point in the aperture plane
to the imaging axis. The phase error can be calculated from
knowledge of the lens design, or measured by analysing images
of a pointlike object. We determined W on the bench by
imaging laser light emitted from a single-mode optical fibre
with a 1/e2-intensity radius of 1.7µm. Analysis of the images
yields aberration coefficients of

C2 = 0.26λ cm−2 C4 = −0.36λ cm−4

C6 = 0.17λ cm−6
(108)

at best focus. An alternative measurement was made in situ
by adjustingW to reproduce the observed ripples in images of
clouds with large condensates. The resulting values are

C2 = 0.34λ cm−2 C4 = −0.30λ cm−4

C6 = 0.094λ cm−6.
(109)

The difference is likely due to additional aberrations caused
by the vacuum viewport.

The goal of the above procedure is to determine N0 as
accurately as possible. Fundamentally, the measurement is
limited by statistical noise in the CCD camera. For a probe
pulse which generates s photoelectrons in a pixel, the shot
noise will be

√
s, and this uncertainty can be included in the

fitting procedure to determine the resulting uncertainty in the fit
parameters. The estimated accuracy of N0 is then ±60 atoms.

�
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�

Figure 22. Calculation of point-transfer function. The phase error
W(k) in (106) is related to the position-dependent phase errorW(ρ)
as seen above. The lens aperture N is located a distance L from the
object. The vector labelled k shows the direction of k; its magnitude
is fixed at 2π/λ. The lens position ρ is related to the radial
component of k by ρ = Lkρ(k2 − k2

ρ)
−1/2.

This is the only source of statistical error in the experiment, in
the sense that if two identical atom clouds were imaged and
analysed, the only difference in the results would be that caused
by variation in the shot noise. The dominant sources of error
in the experiment, however, are not statistical but systematic.
Chief among these is the uncertainty in the lens aberrations
discussed in the previous paragraph. The two different sets
of parameters (108) and (109) give N0 values which differ
by about 40%. We assume that the actual aberrations lie
somewhere in this range, with an estimated uncertainty of
±20%.

Other systematic sources of uncertainty contribute to a
lesser degree. From the QBE results, inaccuracy of the
nonequilibrium fitting function is expected to lead to an error
of ±75 atoms, but this level of accuracy can only be achieved
if the total number of atoms in the cloud is below roughly
5 × 104. Above this range, the N0 values are artificially
inflated. Another source of uncertainty arises from the effect of
interactions on the size and shape of the condensate, since this
has not been observed experimentally and is not necessarily
well understood theoretically. If the compression predicted
by the variational model is included, the highest values of N0

are lowered by about 10%. This provides an estimate of the
uncertainty introduced by this variability.

4.2. Distribution of N0 values

The preceding discussion has illustrated that we can measure
N0 with respectable precision. In order to achieve this,
however, it is necessary to destroy the atom cloud as it is being
observed, which hinders the study of dynamical properties.
As noted in section 3.2, a given trajectory N0(t) is made
unrepeatable by intrinsic quantum and thermal fluctuations,
as well as by variations in experimental conditions. This
prevents the dynamics from being mapped out by repeating
an experiment with a variable delay before probing. Methods
to circumvent these limitations can be considered, but the
simplest approach is to repeat the experiment many times with
a fixed probe delay, and observe the distribution of N0 values
obtained. Since the effect of the experimental and intrinsic
fluctuations is to shift the phase of the collapses, this approach
effectively averages the probability for a particularN0 value to
occur over the oscillation cycles.

For this experiment, data are obtained by loading atoms
into the trap and evaporatively cooling until the microwave
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Figure 23. Variations in QBE trajectories. Simulations of the
equilibration process such as in figure 13 are repeated with varying
random number sequences. The microwave sweep frequencies are
also varied to simulate the effect of trap bias field fluctuations. The
legend shows the energy to which the trap depth is reduced during
the sweep. The time origin is taken to be the time of the sweep.

frequency /T ≈ 100 kHz above the trap-centre resonance.
Approximately 4×105 atoms then remain, at a temperature of
∼400 nK. This is well below the point at which BEC typically
occurs, to ensure that the gas is in the degenerate regime. In
order to accurately determine N0, N must be further reduced.
This is achieved by rapidly sweeping /T down to ∼10 kHz
and then raising it again. This technique is used because it is
fast and because it puts the gas into a definite state at t = 0,
from which the relaxation to equilibrium can be observed. The
microwaves are swept in ∼100 ms, quickly compared to the
collision rate of about 1 Hz, but slowly compared to the trap
oscillation period so that time-of-flight broadening and non-
ergodic effects are not important.

After the sweep, roughly 4 × 104 atoms remain trapped,
at a temperature of 150 nK. The precise values vary from
one repetition to the next because of fluctuations in the trap
bias field. The response predicted by the QBE is shown in
figure 13, and the variations caused by fluctuations can be seen
in figure 23. Collapses continue for 10–20 s after the sweep,
equilibrium is reached at t = 20–30 s and then the condensate
slowly decays because of inelastic collisions.

In the experiment, the gas is allowed to thermalize for a
time τ , and is then probed. The results are shown in figure 24.
For small τ , N0 varies from near zero to about 1200 atoms, as
expected if the condensate is alternately filling to its maximum
and collapsing. At longer time delays, the histograms change
shape, narrowing somewhat at τ = 30 s and exhibiting only
small N0 values at τ = 60 s. At each time, the spread in
values is much larger than the statistical uncertainty in N0, so
the variations are experimentally significant. This conclusion
is confirmed by constructing a histogram at τ = 90 s, when
only smallN0 values should occur. As can be seen in figure 25,
the results of the measurement are indeed small, and consistent
with our expected statistical uncertainty.

This behaviour shown in figures 24 and 25 is qualitatively
the same as that seen in figure 23. To our knowledge, no other
explanation for variations in N0 of this magnitude has been
proposed, and we consider their observation to strongly support
the dynamical picture developed in the previous chapters.
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Figure 24. Frequency of occurrence of N0 values, and dependence
on equilibration time τ . The total number of atoms N ranged from
5 × 103 to 3.5 × 104 in each case. The total number of runs is 106 for
τ = 5 s, 185 for τ = 10 s, 81 for τ = 30 s, and 86 for τ = 60 s. The
width of the bins is approximately the statistical uncertainty in N0.

Quantitative agreement between the model and data is
reasonable, but one notable discrepancy can be observed. In
the calculation of figure 23, the collapse was assumed to
reduce the condensate number to zero. Immediately after this
reduction,N0 is predicted to grow relatively slowly, so that the
values of N0 most likely to occur are much lower than those
seen in figure 24. We interpret this discrepancy to mean that
the collapse does not, in fact, remove the entire condensate. As
noted in section 2.3, Kagan et al [51] predict that the collapse
reduces N0 to Nm/2. This possibility is clearly ruled out by
the large number of points observed with small N0. There
is, in fact, no fixed value to which the collapse could reduce
N0 which reproduces the observed data, since the probability
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Figure 25. Values of N0 obtained at τ = 90 s are always small, and
consistent with the expected statistical uncertainty in the
measurement. A total of 30 runs are shown.
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Figure 26. Predicted histogram when collapsing to a Gaussian
distribution centred at N0 = 200 atoms and with a 1/e half-width of
100 atoms.

of occurrence is seen to rise gradually as N0 increases from
0 to 200 atoms. The data are described best if the number of
atoms remaining after the collapse is allowed to fluctuate, as in
figure 12(b). The predicted histogram for this case is shown in
figure 26, and agrees reasonably well with the data for short τ .

At longer delay times, quantitative comparison with
theory is difficult because the N0 values predicted by the
QBE model depend sensitively on the time at which the last
collapse occurs. However, from the simulation data shown
in figure 23, the model appears to be reasonably consistent
with the measured distribution at τ = 30 s, but to predict
slightly higher values than typically observed at τ = 60 s.
The discrepancy at long times could be explained by technical
sources of heating at the 1 nK s−1 level or lower.

Naturally, it is important to ensure that the fluctuations
observed in figure 24 truly reflect the underlying dynamics
of the gas being sampled, rather than other sources of
experimental noise. For instance, fluctuations in the trap bias
field cause the total number of atoms observed to fluctuate by
∼104 from one repetition to the next, which might reasonably
impact the observed condensate number. However, if the
variations in N0 were caused by such an effect, the measured
values should be correlated with those of the responsible
parameter. Contingency-square analysis [73] was used to

0.1 1 10 100

1

10

ρ

τ (s)
Figure 27. Equilibration of a degenerate gas. The critical parameter
> of equation (110) is shown as a function of delay time after the
microwave sweep τ .

determine that no statistically significant correlation exists with
changes in N , T , phase-space density, loading conditions,
evaporative cooling trajectory, probe parameters, goodness of
fit or from one measurement to the next. We therefore conclude
that the variations are intrinsic to the gas.

4.3. Equilibration

The cycle of condensate growth and collapse is driven by
an excess of noncondensed atoms compared to a thermal
distribution. This excess can be examined directly. Doing
so provides a check on the interpretation of the histogram
data, since the changing shape of the distributions should be
consistent with the approach to equilibrium. The equilibration
process is also interesting in its own right, as it demonstrates
significant differences from the behaviour of a nondegenerate
gas.

The experimental procedures and analysis are exactly
those used to generate the histogram data. However, instead
of considering the values of N0 obtained, the total number N
and temperature parameter β are used to calculate

> ≡ N

Nc
= 0.832N(βh̄ω)3 (110)

as a function of delay time τ . The results obtained are shown
in figure 27. Because of the fluctuations in the trap bias field,
> varies by ∼40% from one run to the next, and the points
shown are averages over several repetitions at each τ . Also,
systematic errors inN and β limit the accuracy of > to roughly
30%. This is reduced for > � 1 by fitting the images to an
equilibrium Bose–Einstein distribution function, which then
gives an uncertainty of approximately 10%.

Because Nm is small compared to N , equilibrium is
reached when > ≈ 1. As can be seen from figure 27, this
occurs at τ ≈ 50 s on average. Comparison with figure 24
shows that this is consistent with the time at which the shape
of the histograms begins to change, helping to confirm the
interpretation of the histograms as reflecting the underlying
dynamical behaviour.

For each value of τ in figure 27, the microwave sweep
at the end of evaporative cooling was adjusted to maintain
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the average number N constant at ∼2 × 104 atoms, to agree
with the data used for the histogram plots. Because of this,
the points shown do not represent the evolution of any single
cloud in time, making interpretation slightly more difficult.
This approach was used because the trap bias field drifts, and
the sweep must be occasionally adjusted to maintain a constant
average N .

The solid curve in figure 27 is a fit to a power law form

>(τ) = >1(1 + κτ)γ> , (111)

with >1 = 12.5, κ = 2.5 s−1 and γ> = −0.52. A power-
law form is to be expected, since the QBE is nonlinear.
Of particular interest is the exponent γ>, since it should be
comparable with theoretical predictions.

For such a comparison to be made, it is necessary to
correct for the variation in initial conditions. If the number
and temperature also vary according to a power law, as

N(t) = N1(1 + κτ)γN (112)

and
T (t) = T1(1 + κτ)γT (113)

respectively, then

>(τ) ∼ N1

T 3
1

(1 + κτ){γN−3γT}. (114)

In the experiment, both N1 and T1 are varied with τ , but the
measured values are observed to be related as T ∝ N1/2. This
is the expected relation for a harmonic trap. Therefore, because
N is held fixed, N1 must vary as τ−γN and T1 as τ−γN/2. Thus,

>(τ) ∝ N

T 3
1 (1 + κτ)3γT

∝ (1 + κτ)3γN/2−3γT , (115)

and the experimental exponent is γ> = 3(γN/2 − γT).
The evolution of N and T can be predicted using the

QBE simulation, which gives γN = −0.2 and γT = 0.1.
The observed γ> is thus predicted to be −0.6, in reasonable
agreement with the experiment. The values of γN and γT

are, however, surprising. For a nondegenerate gas decaying
via two-body inelastic collisions, it can be shown that γN =
−8/11 and γT = 2/11, considerably different than observed.
The exponents obtained in the QBE model are found to be
independent of the value of the loss coefficient G2, and
of the trap depth ET applied after the microwave sweep.
The difference therefore appears to be a signature of the
nonclassical nature of the Bose–Einstein distribution function.

It is interesting to consider what mechanism is mainly
responsible for reducing the excess of atoms and allowing the
gas to equilibrate. Two loss mechanisms are included in the
model, dipolar relaxation and the collapse. In the trajectory
shown in figure 13, 15 collapses occur, in which 1.6 × 104

atoms are ejected from the trap. Between the microwave sweep
and the final collapse, a total of 2.4 × 104 atoms are lost, so
the collapses and dipolar relaxation both play important roles.
The rise in temperature during equilibration is also important,
but the effects of the collapse and of dipolar decay are more
difficult to distinguish. Estimating the average energy gained
through the two processes, however, again suggests that both
contribute at a similar level.

5. Conclusions and new results

The work described here offers two main results regarding
the behaviour of Bose gases with negative scattering length.
The first is the theoretical predictions obtained by modelling
the QBE. For nondegenerate gases, this has provided
information on evaporative cooling to support the experiments.
For degenerate gases, a cycle of condensate growth and
collapse is observed. Although this behaviour can be
qualitatively understood in terms of simpler models, the full
calculation of the QBE is useful, as it gives detailed and
quantitative predictions which can be meaningfully compared
to experiment. Of particular interest are the frequency of
the oscillations, the time for which they continue and the
characteristic shape of condensate growth after a collapse.

Several questions remain to be answered, however. There
is as yet no good theoretical model of the collapse process itself,
which limits the accuracy of the QBE results. First, an accurate
prediction for the state of the condensate after a collapse is
needed, with both the number of atoms remaining and their
excitation energy being important. In addition, the effect of
excitations on the subsequent dynamics of the condensate must
be better understood. This can likely be accomplished through
further analysis of the NLSE, although the correct way to
account for losses from inelastic collisions is not yet clear.

A more difficult question is how to treat the interaction
between the condensate and the noncondensed cloud. This
interaction works two ways: the addition of atoms to the
condensate as the gas cools will both depend on and affect
the state of the condensate. Modelling this situation requires
the inclusion of both coherent and incoherent dynamics, so
neither the NLSE nor the QBE will suffice by themselves.
Stoof has formulated a scheme in which these effects are
combined in a single Fokker–Plank equation governing the
condensate [61], but a full and realistic solution to the problem
remains challenging.

On the experimental side, the central result of this work
is the measurement of the distribution of N0 values described
in section 4. This result provides strong, if indirect, evidence
that the theoretical predictions for the condensate dynamics
are at least qualitatively correct. Furthermore, the detailed
shape of the distributions allows quantitative comparison with
theory. The data suggest that on the order of Nm/6 atoms
remain in the condensate after a collapse, but that this number
fluctuates considerably. No currently available theory is able
to reproduce this result.

Since the work described here was completed, however,
two new experiments have been performed which corroborate
and extend the results obtained. First is the achievement of
BEC in a gas of 85Rb atoms [15]. The unperturbed scattering
length in this case is approximately −20 nm, so large that
N0 is limited to about 80 atoms. However, in a magnetic
field of 155 G, 85Rb atoms undergo a so-called Feshbach
resonance, near which the scattering length depends strongly
on the magnetic field strength. By exploiting this sensitivity,
the researchers were able to achieve BEC in a regime with
positive a, and then change a to be negative. Upon doing so,
they observe that a collapse does indeed occur, as predicted.
In these experiments, a small number of atoms remained in the
condensate after the collapse, in qualitative agreement with
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the result presented here. Direct comparison of the results is
complicated by the fact that the 85Rb experiments took place
at much lower temperatures, and in a trap with significantly
different asymmetry. In addition, the collapse was initiated
withN0 far in excess ofNm, and consequently with high initial
energy. In this case, the collapse mechanisms of quantum
tunnelling and thermal excitation are not relevant.

A second new experiment was carried out using 7Li, in
the apparatus described above [74]. Here a photoassociation
technique was used to selectively remove the condensate
population of a degenerate gas. Because of the presence
of the thermal gas, the condensate subsequently refilled,
and this filling could be observed directly. Furthermore,
when N0 approached its maximum value, a sudden decrease
occurred, exactly as predicted by the collapse/fill model.
These two experiments demonstrate direct agreement with our
understanding of BEC in a gas with attractive interactions,
and also point the way to more explicit and quantitative
comparisons with theory.

Acknowledgments

We are grateful to acknowledge the contributions of C Bradley,
J Gerton, H Stoof, J Tollett and M Welling to the work reported
here. This work was supported by the National Science
Foundation and the Welch Foundation.

References

[1] Einstein A 1925 Sitzungsber. Preuss. Akad. Wissen.,
Physik.-Mathem. Klasse 3

[2] Bose S N 1924 Z. Phys. 26 178
[3] London F 1938 Nature 141 643
[4] Tisza L 1938 Nature 141 913
[5] Bardeen J, Cooper L N and Schrieffer J R 1957 Phys. Rev. 106

162
[6] Snoke D W, Wolfe J P and Mysyrowicz A 1990 Phys. Rev.

Lett. 64 2543
[7] Lin J L and Wolfe J P 1993 Phys. Rev. Lett. 71 1222
[8] Crooker B C, Hebral B, Smith E N, Takano Y and Reppy J D

1983 Phys. Rev. Lett. 51 666
[9] Chan M, Mulders N and Reppy J 1996 Phys. Today 49 30

[10] Safonov A I, Vasilyev S A, Yasnikov I S, Lukashevich I I and
Jaakkola S 1998 Phys. Rev. Lett. 81 4545

[11] Anderson M H, Ensher J R, Matthews M R, Wieman C E and
Cornell E A 1995 Science 269 198

[12] Bradley C C, Sackett C A, Tollett J J and Hulet R G 1995
Phys. Rev. Lett. 75 1687

[13] Davis K B, Mewes M O, Andrews M R, van Druten N J,
Durfee D S, Kurn D M and Ketterle W 1995 Phys. Rev. Lett.
75 3969

[14] Fried D G, Killian T C, Willmann L, Landhuis D, Moss S C,
Kleppner D and Greytak T J 1998 Phys. Rev. Lett. 81 3811

[15] Cornish S L, Claussen N R, Roberts J L, Cornell E A and
Wieman C E 2000 Phys. Rev. Lett. 85 1795

[16] Jin D S, Ensher J R, Matthews M R, Wieman C E and
Cornell E A 1996 Phys. Rev. Lett. 77 420

[17] Mewes M O, Andrews M R, van Druten N J, Kurn D M,
Durfee D S, Townsend C G and Ketterle W 1996 Phys. Rev.
Lett. 77 988

[18] Burt E A, Ghrist R W, Myatt C J, Holland M J, Cornell E A
and Wieman C E 1997 Phys. Rev. Lett. 79 337

[19] Ketterle W and Miesner H J 1997 Phys. Rev. A 56 3291
[20] Andrews M R, Townsend C G, Miesner H J, Durfee D S,

Kurn D M and Ketterle W 1997 Science 275 637
[21] Hall D S, Matthews M R, Wieman C E and Cornell E A 1998

Phys. Rev. Lett. 81 1543

[22] Myatt C J, Burt E A, Ghrist R W, Cornell E A and
Wieman C E 1997 Phys. Rev. Lett. 78 586

[23] Stamper-Kurn D M, Andrews M R, Chikkatur A P, Inouye S,
Miesner H J, Stenger J and Ketterle W 1998 Phys. Rev. Lett.
80 2027

[24] Huang K 1987 Statistical Mechanics 2nd edn (New York:
Wiley)

[25] Kittel C and Kroemer H 1980 Thermal Physics 2nd edn (New
York: Freeman)

[26] Ashcroft N W and Mermin N D 1976 Solid State Physics
(Philadelphia, PA: Saunders)

[27] Meystre P and Sargent M 1991 Elements of Quantum Optics
2nd edn (Berlin: Springer)

[28] Andrews M R, Mewes M O, van Druten N J, Durfee D S,
Kurn D M and Ketterle W 1996 Science 273 84

[29] Abraham E R I, McAlexander W I, Gerton J M, Hulet R G,
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