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Abstract. Bose-Einstein condensation (BEG) of atoms with attractive mteractions
i:< profoundly different from BEC of atoms with repulsive interactions. \Ye describe
expenments with Bose condensates of 'Li atoms ..•...hich are weakJy attracting at uJ·
tralaw temperature. We measure the distribution of condensate occupation numbers
occurring in the gas using a near-resonant optical probe to image the atom doud. This
data shows that the number is limited and demonstrates the dynamics of condensate
growth and collapse due to the attractive interactions.

INTRODUCTION

The recent attainment of Bose-Einstein condensation (BEC) of dilute atomic
gases [1-3J has enabled new investigations of weakly interacting many-body sys-
tenlS. ~Li·is unique among these gases in that tbe interactjons are effectively attrac-
tive, which profoundly effects the nature of BEe:. In fact. it was long believed that
attractive interactions precluded tbe attainment of BEC in tbe gas phase 14,5). It is
now known that BEC can exist in a confined gas, provided the condensate Dumber
remains small [6]. These condensates are predicted to exhibit fascinating dynam-
ical behavior, including soliton formation [7) and macroscopic quantum tunneling
[S-II]. This paper reviews our work on BEe: of 7Li. including the measurement of
limited condensate number. and the dynamics of condensate growth and collapse.

INTERACTIONS IN DILUTE GASES

One of the primary interests in dilute Bose-EinsteiD condensates is that the in-
teractions are weak, facilitating comparison between theory and experiment. When

1) This work is supported by the National Science Foundation, the Office of Naval Research,
NASA, and the Welch Foundation.

CP467, Spectral Line Shapes: Volume 10. 14th ICSLS,
edited by Roger M. Herman

© 1999 The American Institute of Physics 1-56396-754-5/99/$15.00
364



TABLE 1. Singlet and triplet scattering lengths in units of n", for
isotopically pure and mixed gases of lithium isotopes [15].

aT
as

IiLi
-2160 ± 250

45.5 ± 2.5

7Li
-27.6 ± 0.5

33 ± 2

IiLij1Li
40.9 ± 0.2
-20 ± 10

the de Broglie wavelength A is much longer than the characteristic two~body inter-
action length. the effect of the interaction can be represented by a single parameter.
the s-wave scattering length a [121. The magnitude of a indicates the strength of
the interaction, while the sign determines whether the interactions are effectively
attractive (a < 0) or repulsive (a> 0). In the experiments1 the density n is small
enough that nlal3 «: L so only binary interactions need be considered.

Photoassociative Spectroscopy

Although the interaction potentials for till:' alkali atoms lithium through fran-
cium are all qualitatively the same. in that they all have a repulsive inner-wall. a
minimum that supports vibrational bound states. and a long-range van def \Vaals
tail, their respective scattering lengths diffPf enormously in magnitude and in sign.
This variation arises because of differences in the proximity of the least-bound vi-
brational statt:' to the dissociation limit. As with the familiar attractin' square-well
potentiaL a barely bound or barely unbound state leads to collisional resonances
that produce very large magnitude scattering lengths. Therefore. small changes in
the interaction potential may result in a large change in the magnitude. Qr even
change the sign of a. In the past few years, photoassociative spectroscopy of ultra-
cold atoms has proven to be the most precise method for determining scattering
lengths [13]. In one-photon photoassociation1 a laser beam is passed through a gas
of ultracold atoms confined in a trap. As the laser frequency is tuned to a free-
bound resonance. diatomic molecules are formed resulting in a detectable decrease
in the number of trapped atoms. The intensity of the trap-loss signal is sensitive
to the ground-state wavefunction. providing useful information for determining the
ground-state interaction potential. The value of the scattering length is found by
numerically solving the Schrodinger equation using this potential. This method
has been used to find the scattering lengths for Li, Na1 K, and Rb [13].

A more precise method for finding scattering lengths is to probe the ground state
molecular levels directly. \Ve have used two~photon photoassociation to directly
measure this binding energy for both stable isotopes of lithium, tht' bosonic isotope
7Li [14] and the fermionic isotope 6Li [15]. This technique has resulted in the most
precisely known atomic potentials. Table I gives the triplet and singlet scattering
lengths for both isotopes individually, as well as for mixed isotope interactions.
Two-photon spectroscopy of the ground-state has also been used recently to find
the scattering lengths of rubidium [16].
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Mean-Field Theory

ThE' efff'cb of interact.ions all t.he condensate have been studied using meall-fieJd
thf'ory and neglecting inelastic collisions [17]. In this approximation. the interaction
part of the Hamiltonian is replau~d by its mean vahw. resulting in an interaction
f'nergy of U = 4"n"2an/m. wherE' 11 is the df'usity and III j~ tlw atomic mass [12].
For a gas at zero temperature. thf' lIf't H'slIlt of tlw intera,tions and the confining
potential can be found by solYJng the nOIJ-linear Sdnodinger equat.ion for th(' wavE'
function of the condensate. 1h{r) [18J: •.

(__.','v' + \ '(,.)+ U(,·) -1')'/' = O.
2m T (I)

Here II is thE' chemical potentiaL and V(l") is the confining potential provided b~'
the trap. In a sphericaJly symmetric harmonic trap with o~cilJatioll f[t>guenc~· ..••.'.
V(I') = m..•.'"1r2/'2. The interaction f'Iwrgy ['(.I') is df'terminf'd b~· taking 1/(1') =
It(!")I'·

Implications of (j < a
Limited Conden,mte Nurnbe'J'

For a dilute gas with Q > 0, corresponding to repulsiY(~ interactions. it was shown
long ago that the condensate will be stable. The situation is drastically different
for Q < O. since U decreases with increasing 11 so an untrapped (homogeneous) gas
is mechanically unstablt" to collapse. It was therefore believed that BEC was not
possible in the gas phase. In a system with finite volume. however, the. zero-point
kinetic energy of the atoms provides a stabilizing influence. A numerical solution
to Eg. (1) is found to exist only when No is smaIJer than a limiting value .,\Tm [19J.
Physically. this limit can be understood as requiring that the interaction energ:.r [l
be small compared to the trap level spacing h..,;, so that the interactions act as a
small perturbation to the ideal-gas solution. This condition implies that Nil! is of
the order 1011aJ,where 10= (hlmw)l/' is the length srale of the single-particle trap
ground state [20J. For condensate occupation numbers below Nm, 1/-' is determined
using Eq. (1). It is found that for No <: Nn" ,» is closely approximated by the
single-particle ground state, and as No increases, the illteractjon energy causes·the
spatial extent of 1/1 to decrease.

A variational method has been used to study tbe decay of condensates whh
attractive interactions [21,9,10), which we discuss here foHowing the development of
Stoof [10]. The ground-state solution to Eq. (I), ~)o, satisfies an extremal condition

(2)

for any other function 1jJ. The energy operator H is given by
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FIGURE 1. The condensatt' energy H, plotted in units of ;Voh2jmI6. Thp Uppt'f curve cor-
responds to ,Vo ;;: 0.48Io/lal. tht' middle curvl;' to No ;;: 0.68 fo/lal. and the lower curve to
No ;;: O.8ilo/lal· It is evident that a local minimum in H exists near I ::: 10 if So is sufficiently
low. Indicating that a metastable rondensate can exist.

H n' C7' , •
()

iii,.)=--y-+v ,. +--.~m :.?
(:3)

where the fa.ctor of 1/'2 in the interaction term arises from the dependence of C
on IL'. Because the solution to Eq. (1) for the ideal gas is a Gaussian functjon, it
is reasonable to minimize (H) using a Gaussian trial wavefunction with a-variable
Gaussian size I. E\'aluating (H) = H(l) yields the function plotted for three values
of No in Fig. 1. It is obseryed that for sufficiently small No. a local minimum exists
near l :::;;;lo. indicating that a metastable condensate is possible. For larger No.
however. the minimum vanishes. and the system will be ullstable. The condition
for stability is No ::; O.68lo/lal, which is in reasonablt" agreemf'nt with the exact
value obtained by numerical integration of Eq. (1). :\'11(:::;;; 0..58/0/Ial [19].

Condensate Collapse

Although a condensate can exist in a trapped gas. it is predicted to be metastable
and to decay by quantum or thermal fluctuations [8-11]. Tht" condensate has only
one unstable collective mode. which in the case of an isotropic trap corresponds to
the breathing mode [7.:21). The condensate therefore collapses as a whole. either by
thermal excitation over. or by macroscopic quantum mechanical tunneHng through
the energy barrier in configuration space, shown in Fig. 1. The rates of decay
for both quantum tunneling and thermal excitation can bt" calculated within the
formalism of the variational calculation [10].
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Condensate Growth and Collapse DUTing Ev"pom.tio1l

Experimentally. the condensate is formed by e\'aporatin"I.\' cooling the gaS. As
the gas is cooled below the critical temperature for BEC. So grows until IV)!!is
reached. The condensate then collapses spontaneously if .Yo 2: .Ym. or thE' co]~
lapse can be initiat.ed by thermal fluctuations or quantum tunneling for ;\"o ~ ."om
[8~11.22]. During tlw collapse. the condensate shrinks on the time scalf' of the trap
oscillation period. As the density rises. the rates for inelastic coliisions ~~uch as
dipolar decay and three-body mole-cular recombination increase. TIH'Sp processes
release sufficient energy to il11llwdiate1y eject the colliding atoms from tlw trap.
thus reducing .Yo. The ejected ato111sare very unlikely to further interart with the
gas before lea\'ing the trap. sincE' tht" density of 110l1condensed atoms is Jow. As the
collapse proceeds. the collisiou rate grows quickl~' elJOugh that the density remains
small compared to 0-3 and the condellsat~ remains a dilute gas [:n.:n]. However.
the theories are not yet conclusive as to what fraction of the condelJsate atoms
participates in the collapse. and of those participating. what fraction is evC'ntually
ejected.

Both the collapse and the initial rooling process displare the gas from th~rmal
equilibrium. As long as No is smaller than its equilibrium \·alue. as det.ermined
by the total number and average energy of the trapped atoms. the condellsate will
continue to fill until another coliapse occurs. This results in a cycle of condensate
growth and collapse. which repeats until the gas comes to equilibrium with some
.'\'o < J\:m. 'Ve have modeled the kinetics of the equilibration process by numerical
solution of the quantum Boltzmann equation: as described ill Ref. [22]. Fig. 2
shows a typical trajector:r of Ao in time, for our experimental conditions. In this
calculation we make the ad hoc assumptjon that 1\'0 i~ reduced to zero when a
collapse occurs. because an accurate theoretical model of the collapsE' is not yet
available.

EXPERIMENT

Magnetic Trap

The apparatus used to produce BEC of 7Li is described most completely in
Ref. [20]. Laser cooling using the Zeeman technique is used to slow an atomic
beam of lithium atoms, which are then directly loaded into a magnetic trap. There
is no magneto-optical trap used in the experiment. The magnetjc trap is unique
in that it is made from permanent magnets [24]. By explojtjng the enormous field
gradients produced by rare-earth magnets, the resuJting trap potential was made
nearly spherically-symmetric with a large harmonic oscillation frequency of "-'150
Hz. Nm is limited by the tightest trap direction [20), so the condensate density is
maximized for a sphericaHy symmetric potential. In addition, by actively stabHizing
the temperature of the magnets the fields are made hjghly stable, allowing for
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FIGURE 2. Numerical solution of the quantum Boltzmann equa[.ion. showing e\"olutlon of
condensate occupation number. A trapped, degenerate iLi gas is cooled at t = 0 to a temperaturp
of about 100 nK and a total number of 4 x 104 atoms. The gas then freely evolves In time. The
inset shows an expanded view of the early time behavior on the same vertical scale.

relatjyely repeatable and stable experimental conditions. The bias field at the
center of the trap is 1004 G.

Bvaporative Cooling

After about I s of loading, --...2x 108 atoms in the doubly spin-polarized F =
2. mF = 2 state are accumulated. These atoms are then laser cooled to near the
Doppler cooling limit of 200 ilK. At this number and temperature, the phase space
density_ nA3• is still more than 105 times too low for BEC. The atoms are cooied
further by forced evaporative cooling [25J. The hottest atoms are driven to an
untrapped ground state by a microwave field tuned just above the (F = 2. mF =
2) H- (F = 1.mF = 1) Zeeman transition frequency of approximately :3450 !\IHz.
As the a~orns cool, the microwave frequency is reduced. The optimal frequency
vs. time trajectory that maximizes the phase-space density of the trapped atoms
is calculated ahead of time [26J, and depends on the elastic collision rate and the
trap Joss rate. The elastic collision rate ncrv is roughly 1 S-l, with cross-section
cr = biiaz ~ 5 x 10-13 .cm:.!. The collision rate is approximately constant during
evaporative cooling. vVehave recently measured the loss rate due to collisions with
hot background gas atoms to be < 10-4 5-1, and the inelastic dipolar-relaxation
collision rate constant to be 1.05 x IO-H cm3 S-l [27]. From the low background
collision loss rate, we estimate the background gas pressure in the apparatus to
be < 10-12 torr. Quantum degeneracy is typically reached after 200 seconds. with
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FIGURE 3. A schematic of the imaging s)'stem used for m situ phase-contrast polarization
imaging. A linearly polarized laser beam is directed through tbe cloud of trapped atoms located
at A. The prohe beam and scattered light field pass out of a vacuum viewport B, and are relayed
to the primary image plane G by an identiccU pair of 3-cm-diameter, 16-cm-focal-length doublet
lenses C and F. The light is then re-imaged and magnified onto a camera J b)" a microscope
objective B. The measured magnification is 14, and the camera pixels are 19 ,urn square. A linear
polarizer E is used to cause the scattered light and probe fields to interfere, producing an image
sensitive to the refractive index of the cloud.

]V '" JO' atoms at T '" 700 nK. Lower temperatures are reached by extending the
cooling time or by the application of a short I deep cooling pulse.

Phase-Contrast Imaging

After evaporative cooling, the spatial distribution of the atoms is imaged in situ
using an optical probe. Since the single-particJe harmonic oscillator .ground state
of our trap has a Gaussian density distribution with a 1fe-radius of only 3 pm,
a high-resolution imaging system is required. Because the optical density of the
atoms is sufficiently high to cause image distortions when probed by near-resonant
absorption [28)1 we instead use a phase-contrast technique with a relaHvely large
deturung from resonance A = ±250 MHz. Our implementation of phase-contrast
imaging, shown schematically in Fig. 3, is both simple and powerful. It exploits the
fact that atoms in a magnetic field are birefringent, so that the light scattered by
the atoms is polarized differently from the incident probe light. A linear polarizer
decomposes the scattered and probe light onto a common axis, which causes them
to interfere. Since the phase of the scattered light is equal to cr/4D., where cr is the
on-resonance optica.l density, the spatia] image recorded on the CCD camera is a
representation of the integrated atomic column density. Phase-contrast polarization
imaging;s described more fully in Ref. [20].

Fig. 4 shows two images obtained using phase-contrast polarization imaging.
For these images, the trap symmetry is exploited by averaging the data around the
cylindrical trap aJcis to improve the signal to noise.
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FIGURE 4. Phase-contrast images averaged around the cylindrical axis of the trap. For both
cases, N ::::23.000 atoms aud T :::: 190 oK. For the image on the right. No :::: 1050. while for
the Image on the left No :::: 65. These images demonstrates our sensitivity to a small number of
condensate atoms on a background of a large number of non-condensed atoms.

Data Analysis

Image profiles are obtained from the averaged data. These profiles are fit with a
model energy distribution to determine N, T, and No. If the gas is in thermal equi-
librium. then any two of N. T, or No completely determine the density of the gas
through the B'ose-Einstein distribution function. However, if the gas is Ulldergoing
the growth/collapse cycles shown in Fig. 2, it certainly is not in thermal equilib~
riuIn and a more complicated function is required. Using the quantum Boltzmann
equation model, we find that atoms in low4lying levels quickly equilibrate among
themselves and the condensate. and that high-energy atoms are well thermalized
among each other. Therefore. a three parameter function, including two chemical
potentials corresponding to the two parts of the distribution, and a temperature
given by the high-energy tail of the distribution, is sufficient to describe the ex-
pected non-equilibrium distributions and to determine No [29). The fits yield an
average reduced X2 of very nearly 1, indicating that the model is consistent with
the data within the noise level. The procedure was tested by applying it to sim-
ulated data generated by the quantum Boltzmann model, and also by comparing
the analysis of experimental images of thermalized clouds using both equilibrium
and nonequilibrium models. From these tests, the systematic error introduced by
the nonequilibrium model is estimated to be not more than ±50 atoms. The most
significant ullcertainty in No is the systematic uncertainty introduced by imaging
limitations. While the jmaging system is nearly diffraction limited. the resolution
is not negligible compared to the size of the condensate, and imaging effects must
be included in the fit [28]. Imaging resolution is accounted for by measuring the
point transfer function of the lens system and convolving this function with the
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images. Cncertainties in the resolution lead to a s~'stematic uncertainty ill .Yo of
±20'7c [29].

EXPERIMENTAL RESULTS

In this section. we give our experimental results on the observation of limited
condensate number [6], and on the collapse of the condensate [29].

>.

Limited Condensate Number

\Ve have measured lV·ofor several thousand different degenerate distributions with
T ranging between 80 and 400 nK. and for N between 2.000 and :250.000 atoms.
In all cases. Xo is found to be relative]\' small. The maximum .Yo observed is
between 900 and 1400 atoms, depending on the assumed imaging resolution. This
measurement is in very good agreement with the mean-field prediction of 1250
atoms.

In the analysis we have assumed that the gas is ideal. but interactions are ex-
pected to alter the size and shape of the density distribution. Mean-field theory
predicts t.hat interactions will reducf' the 1/ (-radius of the condensate from 3 J-lIl1 for
low occupation number to ,,-,2 JLIl1 as the maximulll.'Yo is approached [30.i.l0:??].
If the smaller condensate radius is used in the fit. the maximum So decreases by
"-'100 atoms.

Condensate Collapse

To explore the predicted collapse of the condensate, evaporative <:Dolingis con-
tinued well into tbe degenerate regime. to N ....,4 x 105 atoms at a microwave
frequency 100 kHz above the trap bottom. The frequency is then rapidly reduced
to ....,10 kHz and raised again, leavjng approximately 4 x 104 atoms. The frequency
is swept qujckly compared to the collision rate of ....,3Hz, so that this "mjcrowave
razor" simp]y eliminates all atoms above a cutoff energy. It thereby creates a defi·
nite energy distribution at a specified time whose relaxation to equilibrium can be
followed. Fig. 2 shows the expected trajectory of No in time, for our experimen-
tal conditions. For this calculation, we have assumed that No js reduced to zero
following a collapse [22).

Although phase-contrast imaging can in prindp]e be neady nonperturbative, it
is not possib]e to reduce incoherent scattering to a negligible Jevel and simultane-
ous]y obtain low enough shot noise to measure No accurate]y. Each atom therefore
scatters several photons during a probe pulse, heating the gas and precluding the
possibility of directly observing the evolution of No in time "" in Fig. 2. This
limitation cannot be overcome by repeatjng the experiment and varying the delay
time T between the microwave razor and the probe, because the evolution of No is
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FIGURE 5. Frequency of occurrence of condensate occupation number. For each measurement,
a nonequiJibriuin degenerate gas was produced, allowed to evolve freely for time T, and then
probed. The spread in No values arisE's as the collapse/fill cycle is sampled at random points.
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made un repeatable by random thermal and quantum fluctuations in the condensate
growth and collapse processes, as well as experimental fluctuations in the initial
conditions. Because of this, however. the values of No occurring at a particular T

are expected to vary as different points in the collapse/fill cycle are sampled. \-Ve
have observed such variations by measuring No for many similarly prepared sam-
ples at several values of T. Their measured distribution are shown as histograms
in Fig. 5. For small T. No ranges from near zero to about 1200 atoms~ as expected
if the condensate is alternately filling to near the theoretical maximum and subse-
quently collapsing. At longer time delays! the histograms change shape, narrowing
somewhat at T = 30 s. and having only small No values at T = 60 s. The vari-
ations in No are un correlated with changes in N! T, probe parameters. imaging
model parameters, and goodness of fit. To OUf knowledge, no other explanation
for variations of this magnitude has been proposed, so we consider the observation
of these variations to strongly support the collapse/fill model. In particular, the
observed spread in observed No values ( 250 atoms) is not simply noise because the
statistical uncertainty in ;'1,'0 is only 65 atoms, as verified by obtaining a histogram
at very l~:mg delay for which the measured No values are consistent with zero.

The histogram data can be compared with the predictions of the quantum Boltz-
mann model. In the model trajectory shown in Fig. 2! three time domains can be
discerned with which the data can be correlated. For T S 20 s, the condensate col-
lapses frequently as the gas is equilibrating. Model histograms for delays of ,5 and
10 seconds are similar to each other! and agree qualitatively with the experimen-
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FIGURE 6. Relaxation of degenerate gas to equilibrium. Data \\'en' taken a5 in Fig. 5, but
for each image the total number of atoms N and the temperature T were used 1.0 determine
.'";1."',. where Nc = 1.2(kT/h .•;)3. Points represent averages of sf'n>ral measuremp.nts, and error
bars are standard deviations. The dashed line at NINe = I approximately denotes the point at
which equilibrium IS reached. The solid curve is a fit to thE' empirical form A( J + h':'") ..•. yielding
A = 12 ± 1. ,,;: 2.1,±.7 S-l. and ~I = -.55 ± .03.

tally observed distributions in being broadly spread between 0 and Sm. Around
T = 20-40 s, equilibrium is reached and No is stabilized for several seconds at a
maximum value. As is observed in the data, No declines at later times as atoms
are lost through inelastic collisions.

The detailed shape of the measured histograms give us insight into the actual
collapse process. The fact that small No is not likely probably indicates that the
collapse is not complete~ but rather to a value near 100 atoms. Kagan d aI. have
observed the condensate to collapse to a nonzero value in numerical solutions of the
NLSE [23]. However, while those authors found that close to 50%of the condensate
was lost during a collapse, our data suggest that considerably smaller remainders
are more likely, since a large fraction of our observations show No < 600 atoms. We
also observe the frequency of occurrence to drop steadily as No jncreases. This may
be the result of the decrease in the condensate energy with increasing No due to
the attractive interactjons. This would likely lead to an acceleration of the rate of
filling of the condensate, and therefore a reduction in the probability of observing
condensates with large No.

The condensate growth and collapse cycle is driven by an excess of noncondensed
atoms compared to a thermal distribution. This excess can be examined directly.
From Nand T, the critical number for the BEC transition, N(:1 is calculated and the
ratio N/N, plotted as a function of delay time in Fig. 6. The ratio decays according
to a power law, which signifies that a nonlinear process governs equilibration. This
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nonlinearity is reasonable since the rate of decay of the excess atoms should depend
both on the excess number and on the collision rate, which in turn depends on iV
and T. Since No «: N} equilibrium is reached when NINe ~ I} which occurs at
T ~ 40 seconds. This time is consistent with the delay required to accurately fit
the image data with an equilibrium model, and with the results of the quantum
Boltzmann model. Comparison of Figs. 5 and 6 shows that the equilibration time is
also consistent with the changing shape of the measured histograms. This fuf'ther
strengthens the conclusion that the variations in No are related to tlw growth and
collapse of the condensate during the equHibration process} since the distribution
of No values changes when the population imbalance driving condensate growth is
eliminated.

CONCLUSIONS

These observations provide quantitative support for the applicability of rnean-
field theory to attractive gases. The measurements described here are the first
indicator of the complex dynamics accompanying BEC in a gas with attract-in"
interactions. vVe believe that they support the collective collapse/fill model as a
useful framework for considering such systems. It is clear. however. that addi-
tional theoretical work is necessary to accurately describe the collapse in detail.
Experimentally. we are pursuing more djrect methods of observing the growth and
collapse of the condensate By such means, we hope to further our understanding
of this novel and interesting state of matter.
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