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We study collisional loss of a quasi-one-dimensional spin-polarized Fermi gas near a p-wave Feshbach
resonance in ultracold 6Li atoms. We measure the location of the p-wave resonance in quasi-1D and
observe a confinement-induced shift and broadening. We find that the three-body loss coefficient L3 as a
function of the quasi-1D confinement has little dependence on confinement strength. We also analyze the
atom loss with a two-step cascade three-body loss model in which weakly bound dimers are formed prior to
their loss arising from atom-dimer collisions. Our data are consistent with this model. We also find a
possible suppression in the rate of dimer relaxation with strong quasi-1D confinement. We discuss the
implications of these measurements for observing p-wave pairing in quasi-1D.
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The realization of ultracold atomic Fermi gases has
provided experimental access to awide array of phenomena,
largely because of the presence of Feshbach resonances
(FRs) that provide for externally tunable interactions [1–4].
In addition to the usual s-wave interactions between dis-
tinguishable fermions, higher partial-wave interactions may
be tuned via FRs [5]. p-wave interactions are of particular
interest as they are the dominant low-energy scattering
process between identical fermions and are predicted to
exhibit phenomena distinct from those observed in s-wave
interacting Fermi gases [6]. In particular, pairing between
identical fermions is an essential ingredient of the Kitaev
chain Hamiltonian [7], which supports Majorana zero
modes at the ends of the chain. These zero modes have
been observed in semiconducting nanowires [8] and are a
promising candidate platform for fault-tolerant quantum
computing [9,10].
p-wave FRs have been observed in 40K [11–13] and 6Li

[14–19]. The severe atom losses associated with these
resonances, however, have limited their usefulness. Three-
body losses, which are suppressed by symmetry in the case
of a fermionic two-spin system with s-wave interactions
[20], are not suppressed for p-wave interactions. Much
work has been done in characterizing the atom loss
associated with p-wave FRs [21–24], and there is renewed
interest in studying these resonances in reduced dimen-
sions. Recent theoretical work has suggested that three-
body losses may be suppressed in quasi-1D [25]. The
absence of a centrifugal barrier in 1D results in Feshbach
dimers that have extended wave functions which overlap
less with deeply bound molecules. If three-body loss is
suppressed by this mechanism, it might open a path toward
realizing p-wave pairing in quasi-1D and emulating the
Kitaev chain Hamiltonian.
We present an experimental study of three-body losses

near a p-wave FR of identical 6Li fermions in quasi-1D.

We measure the three-body loss coefficient (L3) as a
function of 1D confinement for a direct three-body process.
We also analyze the observed atom loss within the
framework of a cascade model with explicit dimer for-
mation and relaxation steps [26,27], using in situ imaging
to reduce the effect of the inhomogeneous density. Finally,
we characterize the confinement-induced shifts in the
resonance position that appear in quasi-1D [28–32].
These shifts allow us to extract a value for the effective
range.
The apparatus and the experimental methods we use to

prepare degenerate Fermi gases have been described
previously [33–35]. A 6Li degenerate Fermi gas is first
prepared in the two lowest hyperfine states of the S1=2
manifold (states j1i and j2i, respectively) at 595 G, and
then loaded into a crossed-beam dipole trap formed by
three linearly polarized mutually orthogonal laser beams of
wavelength λ ¼ 1.064 μm. Each beam is retroreflected,
with the polarizations of the incoming and retroreflected
beams initially set to be perpendicular to each other to
avoid lattice formation. We eliminate state j1i from the trap
with a resonant burst of light. At this stage, we obtain
9ð1Þ × 104 atoms in state j2i in a nearly isotropic harmonic
trap with a geometric-mean trapping frequency of
2π × 305ð2Þ Hz, and at a temperature T=TF ≈ 0.1 where
TF is the Fermi temperature. The optical trap depths are
increased and the polarizations of the retroreflected beams
are rotated to achieve a 7 Er deep 3D optical lattice, where
Er ¼ h2=ð2mλ2Þ ¼ kB × 1.41 μK is the recoil energy, and
m is the atomic mass. During the lattice ramp-up, a
copropagating beam of 532 nm light is introduced along
each trapping-beam dimension to flatten the trapping
potential [33,34]. By tuning these compensation beam
powers, we create a 3D band insulator with a central
density of approximately 1 atom per site. In order to
produce a 2D lattice, which is an array of quasi-1D tubes,
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we slowly turn off the compensation beams and the vertical
lattice beam, while increasing the intensity of the two
remaining beams to achieve a desired 2D lattice depth VL.
This depth determines the confinement in the quasi-1D traps,
which is parametrized by a⊥¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ℏ=mωr

p
transversely and

RF axially, where ωr ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
4ErVL

p
=ℏ is the trapping fre-

quency of a lattice site when approximated as a harmonic
potential, and RFðNt;j;ωzÞ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið2Nt;jþ1Þℏ=mωz

p
is the

Fermi radius of tube j with number of atoms Nt;j and an
axial frequency ωz. The aspect ratio of the quasi-1D tubes
ωr=ωz ≈ 170. We load a maximum of around 30 atoms per
quasi-1D tube with T < TF to avoid exciting any radial
modes.
We use a two-step servo scheme to stabilize the

current in the coils producing the Feshbach magnetic field,
because the 6Li j1i − j1i p-wave FR near 159 G is very
narrow. The first servo S1 provides the large dynamic range
required to run our experimental sequence, while the
second servo S2 controls the current in a bypass circuit
added in parallel to the magnetic coils. This improves the
stability of the magnetic field to �10 mG and provides
finer magnetic-field resolution. After reaching the hold
field B, the atoms are transferred into j1i with a π pulse of
duration 75 μs using rf radiation resonant with the j1i − j2i
transition. After a hold time τ, we ramp the field back to
595 G, where the distribution of the remaining atoms is
imaged using in situ phase-contrast imaging with a probe
beam propagating perpendicular to the tube axis [35]. By
using the inverse Abel transform, which exploits the
approximate cylindrical symmetry of the 2D lattice, we
measure the distribution with a spatial resolution of
approximately three lattice constants. We sector the 2D
lattice into concentric shells in which the tubes have similar
chemical potentials μ. This procedure is useful as scattering
processes are in general energy dependent, so observables
depend on rate coefficients that are averaged over the
Fermi-Dirac distribution for atoms in each tube.
We characterize the j1i − j1i p-wave FR in 3D and quasi-

1D by measuring atom loss as functions of B and τ.
In 3D, we find the onset of loss at 159.05(1) G, which
agrees with previous measurements of the location
of this resonance in 3D [15,17] but differs with other
measurements [19,36] by a few tens of milligauss. We are
not able to resolve the expected doublet feature arising from
the dipole-dipole interaction [12,19,37] because of limita-
tions of the field stability. All the 1D data in this Letter were
measured with the magnetic field aligned with the z axis, and
thus only involve collisions with theml ¼ 0 projection of the
angular momentum. As VL is increased, we observe a
confinement-induced shift in the resonance field and broad-
ening of the atom-loss feature, as shown in Fig. 1(a).
We reviewp-wave scattering in 3D and quasi-1D to show

how the measured confinement-induced shift can be used to
extract αp, the 3D effective range. For low-energy collisions
in 3D, the cotangent of the phase shift δp associated with

p-wave scattering can be expanded as a function of
scattering volume Vp and effective range αp [38]:

k3 cot½δpðkÞ� ¼ −
1

Vp
− αpk2 þOðk4Þ; ð1Þ

where αp > 0 and has units of inverse length. These
scattering properties are modified in quasi-1D,

k cot½δpðkÞ� ¼ −
1

lp
− ξpk2 þOðk4Þ; ð2Þ

where lp is the 1D scattering length and ξp is the 1D effective
range, which has units of length. These quasi-1D scattering
parameters are given by lp ¼ 3a⊥½a3⊥=2Vp þ αpa⊥ þ
6jζð−1=2Þj�−1 and ξp ¼ αpa2⊥=6 [30–32], where ζ is the
Riemann zeta function [ζð−1=2Þ ≈ −0.208]. The second
and third terms in 1=lp lead to a confinement-induced shift
in the resonance location. In this formalism, only dynamics
along the axial dimension are relevant, and scattering

FIG. 1. (a) p-wave resonances in 3D and quasi-1D measured
with magnetic-field-dependent loss. Dashed lines show the
resonance position for each VL. We define the resonance field
for zero-momentum collisions, which corresponds to the onset
(15% loss, to overcome atom number fluctuation) of the observed
atomic loss. Data are averaged over 6 experimental runs and error
bars are the standard error of the mean. (b) Diamonds show B1D
versus VL. The solid curve shows the result of fitting the data to
Eq. (3), where the effective range αp ¼ 0.14ð1Þa−10 and B3D ¼
159.07ð1Þ G are fitted parameters. Error bars are the statistical
uncertainty arising from atom number fluctuation and field
instability. In both (a) and (b), τ is chosen such that peak loss
is 30%–50% of total atom number for each value of VL: 2.5 ms
for 3D, 0.5 ms for 7Er, and 0.2 ms for 15–75 Er.
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quantities, such as the elastic scattering cross section, are
expressed in units appropriate for 1D.
By performing a coupled-channel calculation, which

requires detailed knowledge of the interatomic potentials
[39], we obtain an expansion 1=VpðBÞ up to second order
in B. The effective range αp can be approximated as a
constant independent of B for the relevant range of
magnetic field. The FR in 3D occurs at the magnetic field
B3D at which Vp diverges. Similarly, in quasi-1D, the
resonance occurs when lp diverges at a magnetic field B1D,
which is a function of VL and αp. The confinement-induced
shift, δBðVL; αpÞ ¼ B1D − B3D, can be approximated to
leading order in confinement strength VL by [40]

δB ¼ −2m

ℏ2 ∂ð1=VpÞ
∂B jB¼B3D

αp
ffiffiffiffiffiffiffiffiffiffiffi
VLEr

p
ð3Þ

We cannot accurately measure B3D for ml ¼ 0 alone due to
the unresolved jmlj ¼ 1 collisions in 3D, so we fit the
measured δB as a function of VL to Eq. (3) by taking αp and
B3D as fitting parameters. The result of the fit to the quasi-
1D data is shown by the solid curve in Fig. 1(b). We obtain
αp ¼ 0.14ð1Þa−10 which is consistent with our coupled-
channel result of 0.1412a−10 , where a0 is the Bohr radius,
and B3D ¼ 159.07ð1Þ which is consistent with our loss-
onset measurement and a dipolar splitting of 10 mG in 3D
[19]. We also find a consistent value by analyzing previous
measurements performed on a 2D gas of 6Li in state
j1i [21,40].
The observed atom loss is presumably due to the

formation of deeply bound molecules. To characterize
the loss, we measured N, the number of atoms remaining
in the trap after a hold time τ, for various B and VL.
Background-gas collisions lead to a 1=e atom lifetime of
38 s in this apparatus, and are negligible for this analysis.
Atom loss due to three-body collisions is described by

_N
N

¼ −L3n2; ð4Þ

where n2 ¼ ðNt;c=2RF;cÞ2 is the squared atomic line
density for a central tube, determined using a length scale
of twice the local Fermi radius RF;c. We measure the time
evolution with VL between 15 and 75 Er and extract L3 by
fitting loss versus τ to Eq. (4). Figure 2(a) shows such a fit
to typical loss data. Since L3 also depends on ΔB, the field
detuning from resonance, we extract L3 from the time
evolution at several ΔB to find the peak value for each VL.
The peak L3 for all VL are found to be approximately
7ð2Þ × 10−6 cm2=s. We observe no dependence on 1D
confinement in this range [40]. Because of the inhomoge-
neity of the initial distribution of atoms across the 2D
lattice, however, we find a rather poor agreement of the data
to Eq. (4).

The results of a more comprehensive analysis of the
same data that provides an improved fit to Eq. (4) is shown
in Fig. 2(b). Here, we group the tubes into separate
cylindrical shells (labeled by i ¼ 1–4) with an average
atom number per tube hNtii [40] and a corresponding
Fermi temperature TF;i. Since the tunneling rate is small
compared to the hold time, we assume that the atoms
remain in the same tube, and thus the same shell during the
collision process. Figure 3(a) shows L3 for each shell
extracted from data with VL ¼ 75 Er versus ΔB. The peak
L3 for each shell is in the range of 5 × 10−6 to
1 × 10−5 cm2=s, and is similar to the peak L3 extracted
from the whole atomic cloud.
In Ref. [25], Zhou and Cui suggest that the rate of three-

body loss near a p-wave FR can be suppressed by reducing
the overlap between the wave functions of a deeply bound
molecule and a Feshbach dimer with increasing confine-
ment. To investigate this hypothesis, we analyze our

Shells 

(a)

(b)

FIG. 2. Typical time evolution of (a) total number in the entire
sample and (b) the average tube population hNti in each of 4
shells. For these data, ΔB ¼ 30 mG and VL ¼ 75 Er. The
different colors and symbols in (b) indicate different shells with
approximately uniform initial atom number per tube. The shells
are labeled from i ¼ 1, the innermost, to i ¼ 4, the outermost.
Solid curves show fits to the direct three-body loss model
expressed by Eq. (4) to extract L3 with the squared atomic
density (a) n2 ¼ ðNt;c=2RF;cÞ2 of a central tube and
(b) n2 ¼ ðhNtii=2RF;iÞ2 of a typical tube in each shell. The
corresponding L3 values are plotted in Fig. 3. Data points are
averaged over 5 shots, and the standard error of the mean is
(a) approximately equal to the symbol size and (b) indicated by
the error bars.
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observed loss data using a cascade model of two consecu-
tive two-body processes instead of a direct three-body
event: two atoms resonantly form a dimer, followed by a
collision between the dimer and an atom, resulting in a
deeply bound molecule and an atom [26]. This approach
has previously been applied to the particular p-wave FR we
study, but in 3D and quasi-2D [27]. It is the natural
formalism in which to evaluate the predicted suppression,
as it models the formation and relaxation of dimers. The
equations governing this loss process are

dNa

dt
¼ 2

Γ
ℏ
Nd − 2Kaa

NaðNa − 1Þ
4RF

− Kad
NaNd

2RF
; ð5aÞ

dNd

dt
¼ −

Γ
ℏ
Nd þ Kaa

NaðNa − 1Þ
4RF

− Kad
NaNd

2RF
; ð5bÞ

where Na is the number of atoms, Nd is the number of
dimers, Kaa is the two-body event rate for atom-atom
collisions converting atoms into dimers, andKad is the two-
body atom-dimer inelastic collision event rate. Γ, the one-
body decay rate of dimers, is the width of the FR. The rate
of dimer formation is proportional to the number of
possible pairs of atoms, given by NaðNa − 1Þ=2!.
Kad is of particular interest, as it depends on the overlap

between dimers and deeply bound molecules. Both Γ and
Kaa are related to the elastic scattering cross section
σ1DðEÞ, which can be calculated, thus constraining the
fit to the cascade process to a single parameter,Kad. σ1DðEÞ
may be approximated by a Lorentzian in collision energy,
E ¼ ℏ2k2=m, centered at the above-threshold binding
energy of the Feshbach dimer Eres ¼ −ℏ2=lpξpm > 0

and with width Γ ¼ ðℏ=ξpÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4Eres=m

p
[6,40].

Kaa may be calculated by averaging σ1DðkrÞ over the
ensemble of pairs of atoms with relative momentum kr and
velocity vr,

Kaa ¼ hσ1DðkrÞvri ¼ ℏ
Z

∞

−∞
dkrσ1DðkrÞvrPðkrÞ; ð6Þ

where PðkrÞ is the probability density function of kr
obtained from the density distribution of a trapped Fermi
gas [40]. We assume a global temperature T across the
entire sample. However, μ varies significantly from tube to
tube due to the density inhomogeneity across the 2D lattice.
This effect is mitigated by sectoring the cloud into shells of
similar μ, as discussed earlier, thus giving a distinct value of
Kaa for each shell. For each quasi-1D tube, μ is determined
by Nt;j and T.
Although we cannot directly measure T, we exploit the

fact that at a sufficiently large ΔB, the rate equations can be
approximated as a direct three-body loss process with a loss
coefficient eL3 ¼ ð3=2ÞℏKadKaa=Γ under the assumptions
of a steady-state dimer population (dNd=dt ¼ 0) and
Γ=ℏ≫KadNa=2RF [27]. Assuming that these assumptions

hold for largeΔB, we fit the measured values of L3 for each
shell with T and Kad as fitting parameters to eL3. We find
that T ¼ 0.1TF;1, and thatKad ¼ 0.67 cm=s is independent
of field for ΔB > 100 mG. The assumptions given above
are confirmed in this range. The solid lines in Fig. 3(a)
show eL3 for each shell.
The extracted Kad values from fitting loss data for VL ¼

75 Er to Eqs. (5) using the calculated values of Γ and Kaa
are shown in Fig. 3(b) for the full range ofΔB [40]. We find
that under these conditions, Eqs. (5) model the time
behavior of the observed loss as well as Eq. (4), as there
is little difference between the fit to the cascade model [40]
and the direct three-body loss model. The values of Kad
extracted for ΔB > 50 mG are field independent. The
observed field independence strongly supports the cascade
model as the atom-dimer collision process is inherently
nonresonant. In the dimer formation step, the atoms must
collide with a momentum dictated by the binding energy of
the dimer, which is field dependent. The dimer relaxation
step, however, may proceed for any collision momentum,
as the atom receives the binding energy of the deeply bound
molecule.

Shells 

(a)

(b)

FIG. 3. (a) L3 versus ΔB for VL ¼ 75 Er. L3 is obtained by
fitting Nt;i versus τ to Eq. (4) for each shell. An example of these
data is given in Fig. 2(b) for ΔB ¼ 30 mG. Solid curves show
ð3=2ÞℏKadKaa=Γ with a constant Kad ¼ 0.67 cm=s, calculated
for T ¼ 0.1TF;1, where TF;1 ¼ 4.8ð2Þ μK. (b) Kad versus ΔB.
Kad is extracted by fitting hNtii versus τ to Eqs. (5), using the
calculated values of Γ and Kaa. Black dashed line indicates
ΔB ¼ 27 mG, which corresponds to κa⊥ ¼ 1=2 for VL ¼ 75 Er
[25]. Error bars are 1σ confidence intervals for the fitting
parameters L3 and Kad. The large uncertainty in the fitted values
for the outermost shell is indicative of small Nt.
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The behavior of Kad for ΔB < 50 mG is consistent with
a suppression of the rate of dimer relaxation. The spatial
overlap of the dimer and deeply bound wave functions
increases with κa⊥, where κ ¼

ffiffiffiffiffiffiffiffiffiffiffi
mEres

p
=ℏ, so the predicted

suppression is strongest for small ΔB, where Eres is
smallest. The suppression is expected to be significant
for κa⊥ < 1=2 [25], which for VL ¼ 75 Er corresponds to
ΔB < 27 mG. Another interpretation of the small-detuning
behavior of Kad is that the cascade model breaks down
due to, for example, the existence of a shallow three-body
bound state [41].
This work is the first detailed experimental study of

p-wave collisions in quasi-1D. We confirm the
confinement-induced shift and broadening as a function
of VL. The confinement-induced shift agrees well with
quasi-1D theory [32] and the extracted value of αp agrees
with previous work [21]. We measure L3 as a function of
VL and find no dependence up to 75 Er. The magnetic field
independence of Kad for ΔB > 50 mG strongly supports
the validity of the cascade model [26,27] for three-body
loss in quasi-1D in the regime of large ΔB (> 100 mG), as
well as for intermediate ΔB (50–100 mG) where the
cascade model is not well approximated by the three-body
loss rate equation.
The suppression in Kad at ΔB < 50 mG is possibly

explained by p-wave dimer stretching [25]. Achieving
greater suppression in 6Li by increasing VL is challenging
since at a fixed ΔB, κa⊥ ∝ 1=V1=4

L [40], but future work at
even higher VL or with improved magnetic field resolution
and stability would enable further study of this narrow
feature. The implications for loss suppression due to the
closed-channel character of the p-wave resonance used
here remains to be fully understood theoretically. Our result
also provides insight into a potential pathway toward
observing pairing between identical fermions in cold
atom systems. Suppressing loss in heavier fermions with
FRs, such as 40K [11–13], 161Dy [42], and 167Er [43], is
promising, as small values of κa⊥ may be more readily
achieved in these atoms.
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Note added.—Recently, another group reported on a similar
experiment [44]. Although both groups observe similar
overall atom loss, they report a suppression of L3 ∝ V−1

L ,
while we find L3 independent of VL over a wide range
(Fig. S2 of Supplemental Material [40]). The difference lies

in the choice between defining L3 using the 3D or the 1D
densities. In their analysis, L3 is defined in terms of the 3D
density of a tube, which increases with V1=2

L , while we use
the 1D line density. While the two results are consistent,
we argue that 1D densities are most appropriate based
on physical and practical considerations. Physically, the
dimensionless quantity κa⊥ parametrizes the effective
dimensionality of the system near a FR, and the peak
values of L3 we report were measured in regions where
κa⊥ < 1. Practically, 1D units make it clear that the peak
loss rate is independent of VL.
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